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We consider communication scenarios where one party sends quantum states of known dimensionality
D, prepared with an untrusted apparatus, to another, distant party, who probes them with uncharacterized
measurement devices. We prove that, for any ensemble of reference pure quantum states, there exists one
such prepare-and-measure scenario and a linear functional W on its observed measurement probabilities,
such thatW can only be maximized if the preparations coincide with the reference states, modulo a unitary
or an antiunitary transformation. In other words, prepare-and-measure scenarios allow one to “self-test”
arbitrary ensembles of pure quantum states. Arbitrary extreme D-dimensional quantum measurements, or
sets thereof, can be similarly self-tested. Our results rely on a robust generalization of Wigner’s theorem, a
well-known result in particle physics that characterizes physical symmetries.
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All experiments in quantum physics start by setting the
lab equipment in a given state and end by conducting a
measurement. When we assign different experimenters to
each of these two tasks, namely, when one experimenter is
asked to prepare certain quantum states and another one to
probe them, then we are working in the so-called prepare-
and-measure communication scenario [1,2]. This paradigm
models many primitives of interest for quantum information
theory, such as quantum key distribution [3,4], quantum
communication complexity [5], and metrology [6].
A communication protocol that does not rely on a

characterization of the measurement and preparation appa-
ratuses is said to be “device-independent” (DI) [7]. The
security or success of those protocols is thus guaranteed by
their measurement statistics alone [8,9]. Unfortunately,
prepare-and-measure scenarios cannot be fully DI, as an
arbitrarily large classical memory suffices to explain all
conceivable measurement statistics.
It is possible, however, to devise “semidevice indepen-

dent” (SDI) prepare-and-measure protocols [1]. SDI pro-
tocols rely both on the measurement statistics and also on
some (generally, weak) promise on the preparation or
measurement devices [10–12]. Following most of the
literature on SDI protocols (see, e.g., [1,4,13]), in this
Letter we will posit a bound on the Hilbert space dimension
of the preparations. Note that the SDI paradigm allows
certifying properties that the DI approach cannot, e.g., self-
testing nonprojective measurements [14]. In addition, SDI
protocols are in general experimentally friendlier than their
DI counterparts.

Under the assumption that the Hilbert space dimension
of the prepared systems is known, it was observed in
Ref. [2,14] that certain qubit states and qubit measurements
could be “self-tested”: namely, the only way to generate
certain feasible measurement statistics in a prepare-and-
measure scenario is to prepare those quantum states and
conduct those measurements, modulo unitary and antiuni-
tary transformations. In the same spirit, the authors of [15]
show how to self-test measurements of mutually unbiased
bases [16] in arbitrary dimensions. These works leave us
with the question of which state ensembles and measure-
ments, in the qubit case, as well as in higher dimensions,
can be self-tested.
In this Letter, we answer this question by providing a

family of linear witnesses whose maximal value self-tests
arbitrary ensembles of pure states and arbitrary sets of
extreme positive operator valued measures (POVMs) (or
both), in prepare-and-measure scenarios of arbitrary Hilbert
space dimension. Since neither state ensembles containing
mixed states nor nonextreme POVMs can be self-tested,
our result fully characterizes the limits of self-testing in the
prepare-and-measure scenario. Note that, prior to our work,
general self-testing schemes only existed for scenarios with
nondemolition measurements, which should be sequen-
tially applied in the course of a single experimental
round [17,18].
To prove our main result, we generalize the famous

Wigner’s theorem [19], which states that all physical
symmetries (i.e., all maps from rays to rays that preserve
the absolute value of the scalar product) can be expressed as
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a unitary or an antiunitary transformation. Our generali-
zation considers “noisy partial symmetries,” whose domain
is limited to a finite number of rays and which preserve the
absolute value of the scalar product up to an error.
The scenario we consider differs from that of other works

with a similar flavor, such as Miklin and Oszmaniec’s [20].
In that paper, the authors assume that, every time that the
experiment is reset, the same state preparations and
measurements are available—such scenarios are usually
called “independent and identically distributed” (i.i.d.). To
the contrary, the statistical tests proposed in this Letter do
not rely on the i.i.d. assumption: our results are therefore
robust under the miscalibration of the preparation and
measurement devices and even allow for correlations
between the different experimental rounds.
Prepare-and-measure scenarios.—In a prepare-and-

measure scenario, one party, Alice, prepares a D-dimensional
quantum state labeled by the index x ¼ 1;…; X, and sends it
to a second party, Bob, who probes the state with some
POVM y∈ f1;…; Yg, obtaining an outcome b∈ f1;…; Bg.
The scenario is thus specified by the vector of natural
numbers ðD;X; Y; BÞ.
In the following, we denote Alice’s xth state as ψ̄x

∈BðCDÞ and Bob’s yth POVM by M̄y ≔ ðM̄bjy ∈BðCDÞ∶
b ¼ 1;…; BÞ. We will call ψ̄ (M̄) Alice’s collection of
states (Bob’s collection of POVMs). That is, ψ̄ ¼ fψ̄xgXx¼1,
M̄ ≔ fM̄ygYy¼1. Of course, both states and POVMs are
subject to the usual positivity and normalization condi-
tions, i.e., ψ̄x ≥ 0, trðψ̄xÞ ¼ 1, ∀ x, M̄bjy ≥ 0, ∀ y, b andP

b M̄bjy ¼ ID, ∀ y.
Denoting by Pðbjx; yÞ the probability that Bob

observes outcome b when he performs measurement y
on state x, the experiment’s measurement statistics P ≔
ðPðbjx; yÞ∶x; y; bÞ are given by

Pðbjx; yÞ ¼ trðψ̄xM̄bjyÞ; ∀ x; y; b: ð1Þ

Note that, for any unitary or antiunitary U, the state
ensemble UψU† and the measurements UMU† generate
the same probability distribution Pðbjx; yÞ as the original
state ensemble ψ and measurement setM used by Alice and
Bob. The realizations ðUψU†; UMU†Þ, ðψ ;MÞ are there-
fore operationally indistinguishable within the semidevice
independent paradigm. We call QD the set of all distribu-
tions P admitting some D-dimensional realization ðψ ;MÞ.
Consider a prepare-and-measure scenario ðD;X; Y; BÞ,

and let W∶ RXYB → R be a linear functional with
maxP∈QD

WðPÞ ¼ W⋆. For X ≤ X, Y ≤ Y, we say that
W self-tests the states ðψxÞXx¼1 and the POVMs fMygYy¼1 if,
for any feasible P realized by ðψ̄ ; M̄Þ with WðPÞ ¼ W⋆,
there exists a unitary or antiunitary mapU with the property
that

ψ̄x ¼ UψxU†; x¼ 1;…;X ;

M̄bjy ¼UMbjyU†; y¼ 1;…;Y; b¼ 1;…;B: ð2Þ

We say that W robustly self-tests ðψxÞXx¼1, fMygYy¼1 if, for
all ϵ > 0, there exists ϵ0 > 0 such that W⋆ −WðPÞ ≤ ϵ0
implies that relations (2) are satisfied up to precision ϵ in
trace and operator norm, respectively.
No linear functionalW can self-test nonextreme states or

measurements. Suppose, e.g., thatW were maximized by a
feasible distribution P whose realization involved a mixed
state ψ̄x ¼

P
j λjjϕ̄jihϕ̄jj, with λj > 0. Then, the distribu-

tion P0 generated if we replaced ψ̄x with jϕ̄1ihϕ̄1j would
also maximize W. However, jϕ̄1ihϕ̄1j and ψ̄x are not
connected by a unitary or an antiunitary transformation.
The same argument holds for extreme POVMs.We arrive at
the conclusion that only extreme (pure) states and extreme
POVMs can be, in principle, self-tested, modulo unitary or
antiunitary transformations.
To prove that a prepare-and-measure experimental sys-

tem satisfies an inequality of the formWðPÞ ≥ W⋆ − ϵ, one
would first think of estimating the probabilities Pðbjx; yÞ
through repeated experiments and then evaluating the
witness. However, such a direct approach is only feasible
when the experimental setup satisfies the i.i.d. assumption.
When the system is not i.i.d., the goal is to reject the null
hypothesis that, in each experimental round, WðPÞ <
W⋆ − ϵ. It turns out that, as long as the functional W is
linear, it is possible to devise a statistical test that fits the bill
and yet does not rely on the i.i.d. assumption [21]. In this
test, at each experimental round the inputs x, y are sampled
according to some probability distribution and the output b
is used to generate a round score. The score of the different
rounds is multiplied and a p value for the null hypothesis is
derived. If the system violates the hypothesis and is
approximately i.i.d., the p value will quickly tend to zero
as the number of rounds increases [21].
Reference [14] proposes linear witnesses to self-test

some extreme POVMs and state ensembles in the qubit case
(D ¼ 2). The goal of the rest of this Letter is to generalize
the results of Ref. [14] to robustly self-test any ensemble of
pure states and collection of extreme POVMs, defined in
Hilbert spaces of arbitrary dimension D.
Self-testing of pure state ensembles.—We start by show-

ing how to self-test pure state ensembles. To avoid a
cumbersome notation, from now on, whenever we refer to a
normalized ket jωi, we will use ω to denote its correspond-
ing rank-1 projector jωihωj. For fixed dimensionD, we call
P ⊂ BðCDÞ the set of all rank-1 projectors.
Self-testing of state ensembles is based on the follow-

ing lemma.
Lemma 1.—LetΨ≡ fψ igNi¼1 ⊂ P be a collection of pure

quantum states such that

X
i

αiψ i ¼
ID
D

; ð3Þ

for some fαigNi¼1 ⊂ Rþ. Consider a prepare-and-measure
scenario fD;N; ½ðN2 − NÞ=2�; 2g with the measurements
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labeled by y∈ fði; jÞ∶i > j; i; j ¼ 1;…; Ng. Define the
linear witness

WΨðPÞ ≔
X
i>j

αiαjkψ i − ψ jk1Si;j; ð4Þ

with

Si;j ≔ P½2jx ¼ i; y ¼ ði; jÞ� − P½2jx ¼ j; y ¼ ði; jÞ�: ð5Þ

Then, for all P∈QD, it holds that

WΨðPÞ ≤ 1 −
1

D
: ð6Þ

This inequality is tight and can be saturated by preparing
the states Ψ and choosing the dichotomic measurements
appropriately.
Moreover, if any feasible distribution P, realized with

preparation states fψ̄ igNi¼1 ⊂ BðCDÞ, satisfiesWΨðPÞ ≥ 1−
ð1=DÞ − ϵ, then it holds that

1 − trðψ̄2
i Þ ≤ OðϵÞ;

jtrfψ̄ iψ̄ jg − trfψ iψ jgj ≤ Oð ffiffiffi
ϵ

p Þ; ∀ i; j: ð7Þ

In particular, when ϵ ¼ 0, then all the prepared states
fψ̄ igNi¼1 are pure and have the same projector overlaps as
the reference states ψ .
This lemma can be regarded as a study of the saturation

conditions of a variant of the dimension witness proposed
in [22]. The reader can find a proof in Sec. I of the
Supplemental Material [23], where the exact expressions
for the right-hand sides of Eq. (7) are provided.
Now, suppose that we wished to self-test an ensemble of

pure-state preparations fψ igMi¼1. To exploit Lemma 1, we
need to find (pure) states fψ igNi¼Mþ1 and positive real
numbers fαigNi¼1 such that condition (3) holds. Such extra
states and positive numbers always exist: consider, for
instance, the maximum λ∈R such that the operator V ¼
ðI=DÞ − λ

P
M
i¼1 ψ i is positive semidefinite [30]. LetP

N
i¼Mþ1 βijψ iihψ ij be the spectral decomposition of V,

with βi > 0 (we omit the eigenvectors with zero eigenvalue,
so N ≤ M þD − 1). Then we have that fψ igNi¼1, and
fαigNi¼1, with αi ≔ λ, for i ¼ 1;…;M, and αi ≔ βi, for
i ¼ M þ 1;…; N, satisfy condition (3).
Given ψ ¼ fψ igNi¼1, fαigNi¼1, we can thus build the

witness WψðPÞ. By Lemma 1, if Wψ ðPÞ is ϵ close to its
maximum value, then the prepared states fϕigNi¼1 will
satisfy Eq. (7). The question is whether, for ϵ sufficiently
small, this condition implies that ϕi ≈Uψ iU†, for all i, for
some unitary or antiunitary U.
Note the similarities with the famous Wigner’s theorem

[19,31,32], whose finite-dimensional version reads [33] as
follows.

Theorem 2.—Let the (possibly nonlinear) map ω∶P →
P have the property

trðϕϕ0Þ ¼ tr½ωðϕÞωðϕ0Þ�; ∀ ϕ;ϕ0 ∈P: ð8Þ

Then, there exists a unitary or antiunitary transformation U
such that

ωðϕÞ ¼ UϕU†; ∀ ϕ∈P: ð9Þ

We wish to generalize this result in two ways. First, in
our case the domain of ω only covers a finite set of rank-1
projectors, namely, fψ igNi¼1. Second, we are interested in
situations where Eq. (8) only holds approximately. This
leads us to define what from now on we call the “Wigner
property.”
Definition 3.—We say that a set of pure states fψ igNi¼1 ⊂

P satisfies the Wigner property if, for all δ0 > 0 and for any
set of (not necessarily pure) states fψ̄ igNi¼1 ⊂ BðCDÞ, there
exists δ > 0 such that the relation

jtrðψ iψ jÞ − trðψ̄ iψ̄ jÞj ≤ δ; i; j ¼ 1;…;M; ð10Þ

implies that there exist a unitary (antiunitary) transforma-
tion U with kψ i −Uψ̄ iU†k1 ≤ δ0, for i ¼ 1;…;M.
As observed in [20], for D ¼ 2 all pure state ensembles

satisfy the Wigner property. In that case,

ψ i ¼
I þ m⃗i · σ⃗

2
; ψ̄ i ¼

I þ n̄i · σ⃗
2

; ð11Þ

for some vectors fm⃗i; n⃗i∶ km⃗ik; kn⃗ik ≤ 1gNi¼1 ⊂ R3. Here,
σ⃗ ¼ ðσx; σy; σzÞ denotes the three Pauli matrices. Setting
δ ¼ 0 in Eq. (10), we have that m⃗i · m⃗j ¼ n⃗i · n⃗j, for all i, j.
It follows that there exists an orthogonal transformation O
such that n⃗i ¼ Om⃗i, for all i. Any orthogonal transforma-
tion in R3 can be expressed as either R or TR, where R
represents a rotation and T a reflection. In the first case,
there exists a unitary U such that ϕi ¼ Uψ iU†, for all i. In
the second case, there exists an antiunitary operation V
such that ϕi ¼ Vψ iV†. In Sec. III of the Supplemental
Material we provide a robust version of this argument,
which proves that any ensemble of pure states in dimension
D ¼ 2 satisfies the Wigner property with δ0 ¼ Oðδ1=4Þ.
How about higher dimensions? Do pure state ensembles

in, say, dimension 3, satisfy the Wigner property, too? In
general, no. In Sec. V of the Supplemental Material we
present several examples of pairs of state ensembles in
dimension 3 that, despite having the same overlaps, are not
related via unitary or antiunitary transformations.
Furthermore, we find that generic ensembles of three
two-dimensional pure states, embedded in BðC3Þ, do not
satisfy the Wigner property, even if we restrict it to the zero-
error case (δ ¼ 0).
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How can we then certify state ensembles of dimensions
greater than two? A possible way to solve this problem is to
look for inspiration in the recent literature on Wigner’s
theorem. In this regard, the proof of Wigner’s theorem in
[32] relies on the existence of a set of 5D − 6 pure states
T ⊂ P with the following property: for any ensemble of
pure states Ψ ¼ fψ igNi¼1 ⊂ P such that hkjψ ijki > 0,
∀ k; i, the overlaps between the states in Ψ ∪ T uniquely
identify this latter set, modulo a unitary (antiunitary)
transformation. In Sec. II of the Supplemental Material
we make this statement robust. Namely, we prove the
following result.
Lemma 4.—Let fψ igNi¼1 ⊂ P be such that

trðψ ijkihkjÞ ≥ f > 0, for k ¼ 1;…; D. Then, the ensemble
of pure states T ∪ fψ igNi¼1 satisfies the Wigner property
with δ0 ¼ Oð ffiffiffi

f
p

D7=4δ1=8Þ.
To arrive at robustness bounds that scale well withD, the

proof makes use of Hausladen and Wootters’ pretty good
measurement [34], duality theory [35], and exactly solvable
tridiagonal matrices. The exponent 1=8 on δ is admittedly
very inconvenient. Presumably, one could achieve better
robustness bounds by taking a tomographically complete
fiducial set T 0 instead of T . This is the approach used in
[17], which follows more closely the original proof of
Wigner’s theorem. The tomographic approach has the
disadvantage of requiring OðD2Þ new state preparations,
instead of OðDÞ.
Now, suppose that we wish to self-test the ensemble of

preparations ψ ¼ fψ igMi¼1 ⊂ P. First, we transform the
computational basis fjkigDk¼1 with a unitary to ensure that
all M states in ψ satisfy trðψ ijkihkjÞ > 0, ∀ k (a random
unitary will achieve this with probability 1). Next, we
consider the ensemble of preparations ψ̃ ≔ ψ ∪ T ∪ R,
where R are extra states (not to be self-tested) that we
might need to add to ensure that the ensemble ψ̃ satisfies
condition (3) for some positive numbers ðαiÞi.
Suppose that the corresponding dimension witness

Wψ̃ ðPÞ is maximized by the set of (necessarily pure) states

ψ̄ ∪ T̄ ∪ R̄. Then condition (10) and Lemma 4 guarantee
that the ensembles of states ψ ∪ T , ψ̄ ∪ T̄ , are related by a
unitary or an antiunitary transformation. In particular, the
witness Wψ̃ self-tests the reference states fψ igMi¼1. This
result can be made robust by applying Lemmas 1 and 4 in
sequence. Thus, a value of Wψ that is ϵ short from
maximum indicates that Uψ̄ iU† is Oðϵ1=16Þ away from
ψ i, for all i.
Self-testing of extremal POVMs.—We now turn to the

problem of self-testing extremal POVMs. We will rely on
the characterization of extreme quantum measurements by
D’Arianno et al. [36]. Namely, a POVM ðMbÞb is extremal
if and only if, for any set of D ×D Hermitian matrices
ðHbÞb, with SuppðHbÞ ⊂ SuppðMbÞ, ∀ b, the conditionP

b Hb ¼ 0 implies that Hb ¼ 0, ∀ b.

Now, let ðMbÞb be an extreme POVM, and, for each b,
let Zb be a projector onto the kernel of Mb. Then, the
only maximizer of the POVM optimization problem
maxM̄ −

P
b trðZbM̄bÞ is M. Indeed, first note that the

maximum value of the problem is zero, which can, indeed,
be achieved by the solution M̄ ¼ M. Now, suppose that
there exists another solution M⋆ of the optimization
problem. Then, trðM⋆

b ZbÞ ¼ 0, for all a, which implies
that SuppðM⋆

b Þ ⊂ KernðZbÞ ¼ SuppðMbÞ. Define then
Hb ≔ M⋆

b −Mb. Then on one hand we have that
SuppðHbÞ ⊂ SuppðMbÞ, for all b. On the other hand,P

b Hb ¼
P

b M
⋆
b −

P
b Mb ¼ I − I ¼ 0. By the extrem-

ality of M it thus follows that Hb ¼ 0, for all b, and
so M⋆ ¼ M.
Combined with our tool for self-testing states, this

observation is enough to self-test ðMbÞBb¼1. Let Zb admit
a spectral decomposition as Zb ¼

Pdb
i¼1 jψa

i ihψa
i j and

define the pure state ensemble ψ ≔ fψb
i ∶i; bg ∪ T ∪ R,

where R is again a set of pure states such that ψ satisfies
Eq. (3). We define a prepare and measure scenario with
X ¼ P

b db þ jT j þD − 1, Y ¼ ðX2 − XÞ=2þ 1, where
measurements y ¼ 1;…; Y − 1 are dichotomic and meas-
urement y ¼ Y has B outcomes, and consider the witness

WM̄ðPÞ ¼ WψðPÞ −
X
b

Xdb
i¼1

Pðbjx ¼ ði; bÞ; y ¼ YÞ: ð12Þ

The maximum value of this witness is clearly 1 − ð1=DÞ,
achievable by preparing the states ψ , conducting the
optimal dichotomic measurements to distinguish every pair
of states in ψ and also M as the Yth POVM. Now, suppose
that the maximum value of the witness is achieved by
preparing states ψ̄ and conducting POVM M̄ for measure-
ment y ¼ Y. Since the witness WψðPÞ is saturated, there
exists a unitary (antiunitary) transformation U such that
Uψ̄U† ¼ ψ . Let us then consider the POVMM0 ≔ UM̄U†.
Then this POVM satisfies

P
b trðZbM0

bÞ ¼ 0, and thus, by
the previous reasoning, M0

b ¼ Mb, for all b. We demon-
strate the above construction for self-testing on a specific
extremal nonprojective POVM in Sec. VI of the
Supplemental Material. On the other hand, in Sec. IV of
the Supplemental Material, we present a robust version of
this argument. Namely, we show that, if WM̄ðPÞ > 1−
ð1=DÞ − ϵ, then there exists a unitary or antiunitary U such
that UM̃bU† ¼ M̄a þ δ, with δ ¼ Oðϵ1=16Þ in the D ¼ 2

case or δ ¼ Oðϵ1=32Þ, otherwise.
The above construction allows one to self-test several

extremal POVMs at a time: indeed, it suffices to add more
terms of the form

P
b

Pdbjy
i¼1 P½bjx ¼ ði; b; yÞ; y� to (12) and

update the state preparation witness to self-test the states
ψbjy
i required to express the projector onto the kernel of the

desired POVM ðMbjy∶bÞ. In sum, we can devise a prepare-
and-measure experiment to self-test as many pure states and
extremal POVMs as we wish.
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Dealing with higher dimensional leakages.—
Throughout this Letter, we were assuming that the
Hilbert space where the preparations took place had
dimension D. In a realistic experiment, though, it is more
plausible that Alice’s preparations fψ̄ igi actually live in
BðCEÞ, with E > D, possibly with E ¼ ∞. Unfortunately,
it is impossible to devise a D-dimensional experiment that
self-tests preparations and measurements under the
assumption that both objects act on a Hilbert space of
dimension smaller than or equal to E > D, even if E ¼
Dþ 1 [37]. Our results are, however, robust under the
assumption that there exists a D-dimensional projector ΠD
such that the prepared states satisfy trðψ̄ iΠDÞ ≥ 1 − δ, ∀ i.
Indeed, as long as δ is small enough, it is easy to see that a
close-to-maximal value of our linear witnesses implies the
existence of an isometry (anti-isometry) that approximately
transforms the actual states and measurements into the
reference ones [38].
Conclusion.—In this Letter, we have completely char-

acterized the limits of robust self-testing in the prepare-and-
measure scenario, under a promise on the Hilbert space
dimension of the prepared states. Namely, we have proven
that, for any ensemble of pure quantum states and any set of
extremal POVMs, one can devise a linear witness whose
maximal value implies that the underlying states and
measurements are related to the reference ones by a unitary
or an antiunitary transformation.
Regrettably, the analytic robustness bounds we found,

while exhibiting a reasonably good dependence on the
Hilbert space dimension, scale with the experimental error
ϵ as ϵ1=32. As such, they are impractical for realistic
implementations. For small dimensions and a small number
of preparation states, it might be feasible, though, to obtain
more accurate predictions by combining the swap tech-
nique of [39] with standard semidefinite programming
relaxations of the set QD [40,41].
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