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Abstract
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1 Introduction

The subfield subcode of a linear code C ⊂ F
n
qs , with s ≥ 1, is the linear code C ∩ F

n
q .

Considering subfield subcodes is a standard technique for constructing long linear codes
over a small finite field. For instance, BCH codes are obtained in this way. They can be
regarded as subfield subcodes of Reed–Solomon codes and their duals (Bierbrauer 2002). In
this work, we study subfield subcodes of projective Reed–Solomon codes.

Reed–Solomon codes are constructed by evaluating one-variable polynomials at points
of the affine line. They have optimal parameters, although they cannot be defined over a
small finite field. Projective Reed–Solomon codes are constructed by evaluating two-variable
homogeneous polynomials at points of the projective line. When one evaluates at all the
points they are commonly called doubly extended Reed–Solomon codes. Subfield subcodes
of projective Reed–Solomon codes, when one evaluates at all the points of the projective
line, were studied in Bierbrauer and Edel (1997).

In this work, we consider a more general setting: wemay evaluate at fewer points to define
a projective Reed–Solomon code and then compute its subfield subcode. We provide bases
for both the subfield subcodes of projective Reed–Solomon codes and their duals and, thus,
a formula for their dimension. For the dual code, we use Delsarte’s Theorem 4.1, for which
we need to study first the metric structure of the codes we are considering. We also study
the vanishing ideal of the points in which we evaluate, which allows us to discuss linear
independence between the traces that arise when using Delsarte’s Theorem. Moreover, we
estimate the minimum distance for both primary and dual codes. For the primary code we
simply use the bound given by the projective Reed–Solomon code, and for the dual one we
use a BCH-type bound.

Reed–Solomon and BCH codes have been extensively used to construct quantum codes
using the CSS construction, see, for instance, (Bierbrauer and Edel 2000; Galindo et al.
2021; La Guardia 2020). It is, therefore, natural to consider subfield subcodes of projective
Reed–Solomon for constructing quantum codes.

The construction of quantum computers has important consequences because of their
computing capabilities. Despite the fact that quantum mechanical systems are sensitive to
disturbances and arbitrary quantum states cannot be replicated, error correction is possible.
Quantum error-correcting codes are designed for protecting quantum information from quan-
tumnoise andparticularly decoherence.An important class of quantumerror-correcting codes
are stabilizer codes; they can be derived from classical ones using self-orthogonal codes for
the symplectic product (Calderbank and Shor 1996). One can also consider the Euclidean and
the Hermitian inner product, and we will call the resulting quantum error-correcting codes
QECCs. Entanglement-assisted quantum error-correcting codes (EAQECCs) constitute an
extension of quantum codes. EAQECCs make use of pre-existing entanglement between
transmitter and receiver to correct more errors (Brun et al. 2006; Galindo et al. 2019b). One
virtue of this class of codes is that one can get a quantum code from any linear code with-
out any assumption on dual containment. The main additional task for EAQECCs is to give
formulae to obtain the optimal number c of maximally entangled pairs of qudits needed.

Moreover, both forQECCs andEAQECCs, one can consider the asymmetric case (Galindo
et al. 2020; Ioffe and Mézard 2007; Sarvepalli et al. 2009). Asymmetric quantum codes have
a different error-correction capability for phase-shift and qudit-flip errors. These two types
of errors are not equally likely, and it is desirable to construct quantum codes with a higher
correction capability for phase-shift errors (Ioffe and Mézard 2007).
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In this work, we provide EAQECCs with excellent parameters coming from different
constructions. In the Euclidean case, we are able to obtain both symmetric and asymmetric
EAQECCs with excellent parameters from subfield subcodes of projective Reed–Solomon
codes. A key fact for the construction of these codes and the computation of their parameters
is the knowledge of the parameters and structure of both the primary and dual codes. We also
obtain QECCs, i.e. EAQECCs without entanglement assistance, from subfield subcodes of
projective Reed–Solomon codes in some cases. By considering the Hermitian inner product
we are also able to obtain codeswith excellent parameters. In fact, we produce newparameters
according to Grassl (2007). Furthermore, as we are giving several different constructions
using subfield subcodes of projective Reed–Solomon codes, this contributes to expanding
the known constellation of parameters for EAQECC.

Finally, we consider the codes in Galindo et al. (2019c), Reed–Solomon, and BCH codes
obtained by evaluating at the roots of a trace function. We construct the projective version of
the codes in Galindo et al. (2019c), that is, the subfield subcodes of projective Reed–Solomon
codes evaluating at the roots of a trace function and the point at infinity. This allows us to
give classical linear codes which are record in Grassl (2007), and new EAQECCs.

Our results can be summarized as follows.

• We consider projective Reed–Solomon codes over the zero locus of xN − x (and the
point at infinity), where we evaluate an arbitrary set of monomials. We obtain bases for
the subfield subcodes of these codes in Theorem 3.4.

• When p | N , bases for the duals of the subfield subcodes are obtained in Theorem 4.14.
• Considering sets of monomials whose exponents are a union of consecutive cyclotomic

sets and the next minimal element, we obtain EAQECCs with entanglement parameter
c ≤ 1 in Theorems 5.5 and 5.15. Some of the resulting codes improve the table for
EAQECCs from Grassl (2007).

• Assuming p | N , by considering the sets of monomials {0, 1, . . . , di }, for some 1 ≤
d1, d2 ≤ N − 1, we obtain asymmetric EAQECCs with entanglement parameter c = 1,
which compare favorably with the current literature.

• By evaluating in the zeroes of the trace function, plus the point at infinity, and evaluating
monomials whose exponents are a union of consecutive cyclotomic sets and the next
minimal element, we obtain linear codes with good parameters in Theorem 6.4, some
of which improve the best known parameters in Grassl (2007), see Example 6.5. More-
over, we obtain EAQECCs with good parameters and entanglement parameter c ≤ 1 in
Theorem 6.6.

2 Preliminaries

We consider a finite field Fq of q elements with characteristic p, and its degree s extension
Fqs , with s ≥ 1. We consider the affine space A

1 over Fqs and the polynomial ring R =
Fqs [x]. We choose a set of elements Y = {Q1, . . . , Qn} ⊂ A

1 and its vanishing ideal
I (Y ) = 〈∏n

i=1(x − Qi )〉, where we are regarding the points of A1 as elements in Fqs . We
define the following evaluation map:

evY : R/I (Y ) → F
n
qs , f 	→ ( f (Q1), . . . , f (Qn))Qi∈Y .

where we denote a polynomial and its class in the quotient ring R/I (Y ) in the same way.
Let � be a subset of {0, 1, . . . , n − 1}. Then, the Reed–Solomon code associated to � and
Y , denoted by RS(Y ,�), is the code generated by
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{evY (xi ) | i ∈ �}.
The usual choices are � = {0, 1 . . . , d} and Y = F

∗
qs = Fqs \ {0}, which give a Reed–

Solomon code with parameters [qs − 1, d + 1, qs − d − 1]. This code can be extended by
evaluating at 0 as well, obtaining a code with parameters [qs, d + 1, qs − d].

Let N > 1 be such that N − 1 | qs − 1. We can consider the set of points Y ∗
N =

{Q1, . . . , QN } given by the zero locus of I (Y ∗
N ) = 〈xN−1 − 1〉. In this case, Y ∗

N forms a
multiplicative subgroup of F∗

qs and it is already known how to obtain bases for its subfield
subcodes (see, for example, Hattori et al. 1998; Hernando et al. 2010). Moreover, BCH
codes can be defined as the duals of the subfield subcodes of Reed–Solomon codes when we
evaluate in a subgroup Y ∗

N (Bierbrauer 2002). Indeed, let α ∈ Fqs be a primitive (N − 1)th
root of unity. C is a BCH code of designed distance δ if it has as generator polynomial
the least common multiple of the minimal polynomials of the δ − 1 consecutive elements
αb, αb+1, . . . , αb+δ−2, with b ≥ 1, which implies that C is formed by the vectors over FN−1

q
that are orthogonal to the rows of the matrix:

H =

⎛

⎜
⎜
⎜
⎝

1 αb α2b · · · α(N−2)b

1 αb+1 α2(b+1) · · · α(N−2)(b+1)

...
...

...
. . .

...

1 αb+δ−2 α2(b+δ−2) · · · α(N−2)(b+δ−2)

⎞

⎟
⎟
⎟
⎠

. (1)

However, this is precisely the generator matrix of the Reed Solomon code over Fqs with
� = {b, b + 1, . . . , b + δ − 2} and Y = Y ∗

N . Furthermore, the vectors in F
N−1
q that are

orthogonal to the rows of H are precisely the vectors of the subfield subcode of the dual code
of this Reed–Solomon code, which is, therefore, equal to the aforementioned BCH code. In
this situation, we say that H is a pseudo parity check-matrix for C .

Because of the previous discussion, throughout this work we will focus on evaluating
in subgroups of the form Y ∗

N unless stated otherwise. As before, we can also include the
evaluation of 0, which corresponds to considering instead the set YN , the zero locus of
I (YN ) = 〈xN − x〉. For the Reed–Solomon codes obtained by evaluating the associated
monomials to � in YN we will use the notation RS(N ,�). The subfield subcode of the code
RS(N ,�) over Fq is denoted by RS(N ,�)q := RS(N ,�) ∩ F

N
q . In this case, for the sake

of simplicity, we are also going to denote RN := R/I (YN ).
Now, we are going to introduce some necessary definitions to obtain bases for the codes

RS(N ,�)q . We define ZN = {0}∪Z/〈N −1〉, where we represent the classes of Z/〈N −1〉
by {1, . . . , N }. A subset I of ZN is called a cyclotomic set with respect to q if q · z ∈ I for
any z ∈ I. I is said to be minimal (with respect to q) if it can be expressed as I = {qi · z, i =
1, 2, . . . } for a fixed z ∈ I, and in that situation we will write Iz := I and nz = |Iz |. We
say z is a minimal representative of Iz if z is the least element in Iz , and we will say it
is a maximal representative of Iz if it is the biggest element. We will denote by A the set
of minimal representatives of the minimal cyclotomic cosets, and by B the set of maximal
representatives of the minimal cyclotomic cosets.

Example 2.1 Consider the extension F9 ⊃ F3. We consider N = 9 and we have ZN =
{0} ∪ Z/〈8〉. We have the following minimal cyclotomic sets:

I0 = {0}, I1 = {1, 3}, I2 = {2, 6}, I4 = {4}, I5 = {5, 7}, I8 = {8}.
The set of minimal representatives is A = {0, 1, 2, 4, 5, 8}, and the set of maximal
representatives is B = {0, 3, 4, 6, 7, 8}.
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The dimension of the subfield subcodes of Reed–Solomon codes is already present in
Hattori et al. (1998). For the codes RS(N ,�)q it is possible to obtain a basis given by the
evaluation of some polynomials. For each a ∈ A, we define the following trace map:

Ta : RN → RN , f 	→ f + f q + · · · + f q
(na−1)

,

and given � ⊂ {0, 1, . . . , N − 1}, we denote �I := ⋃
Ia⊂� Ia ⊂ �. The following result

gives a basis for the code RS(N ,�)q (Galindo et al. 2019a, Thm. 11).

Theorem 2.2 Let � be a subset of {0, 1, . . . , N − 1} and set ξa a primitive element of the
field Fqna . Then, a basis of the vector space RS(N ,�)q is given by the images under the map
evYN of the set of classes in RN :

⋃

a∈A|Ia⊂�

{Ta(ξ ra xa) | 0 ≤ r ≤ na − 1}.

As a consequence, we have that

dim RS(N ,�)q =
∑

Iz :Iz⊂�

nz = |�I|.

Having seen the affine setting, we are now going to introduce the codes we are going to
use throughout this work. We consider the projective line P1 over Fqs and the polynomial
ring S = Fqs [x0, x1]. Given a degree d ≥ 1, we denote by Sd the homogeneous polynomials
of degree d . We are going to fix representatives for the points of P1 in the following way:
for each point [P] ∈ P

1, we choose the representative whose first nonzero coordinate is
equal to 1. We will denote by P1 this set of representatives, seen as points in the affine space
A
2, and we will call them standard representatives. If we also consider a finite set of points

X = {Q1, . . . , Qn} ⊂ P1, we can define the following evaluation map:

evX : S/I (X) → F
n
qs , f 	→ ( f (Q1), . . . , f (Qn))Qi∈X ,

where, as before, we denote a polynomial in S and its class in S/I (X) in the same way. Given
� ⊂ {0, 1, . . . , n − 1}, we define d(�) := max{i | i ∈ �}. The projective Reed–Solomon
code associated to � and X is the code generated by

{evX (xd(�)−i
0 xi1) | i ∈ �},

which will be denoted by PRS(X ,�). We note that we are only evaluating monomials of
exactly degree d(�), which means that their linear combinations are homogeneous polyno-
mials of degree d(�). If 0 /∈ �, PRS(X ,�) is a degenerate code, because all the previous
monomials would evaluate to 0 at the point [1 : 0]. Therefore, we are always going to assume
in what follows that 0 ∈ �. Some authors define these codes over the projective space with-
out fixing representatives, as in Martínez-Bernal et al. (2017), but then they can only define
the code up to monomial equivalence. Monomially equivalent codes do not necessarily have
monomially equivalent subfield subcodes, for example in Hernando et al. (2013) the authors
see that the dimension of the subfield subcode of a generalised Reed–Solomon code depends
on the twist vector chosen, and that is why we fix representatives from the beginning.

Given a degree 1 ≤ d ≤ qs , themost standard definition of projectiveReed–Solomon code
in the literature is the codePRS(P1,�d), where�d := {0, 1, . . . , d}. The codePRS(P1,�d)

is also called doubly extended Reed–Solomon code and its parameters are [qs +1, d+1, qs −
d + 1].
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To obtain bases for the subfield subcodes of the codes PRS(X ,�), we are going to evaluate
in subgroups similarly to the affine case. The natural ideal is to add the point at infinity
[0 : 1] to the points that we were considering in the affine case. Therefore, given N , such that
N−1 | qs−1,we defineX∗

N = [{1}×Y ∗
N ]∪[0 : 1] ⊂ P

1 andXN = [{1}×YN ]∪[0 : 1] ⊂ P
1,

where we recall that Y ∗
N and YN are the zero locus of 〈xN−1 − 1〉 and 〈xN − x〉, respectively.

However, it is easy to see that another set of representatives for X∗
N is [YN × {1}]. Thus,

the codes obtained when evaluating in this set would be monomially equivalent to the ones
obtained in the affine case when evaluating in YN . As we said before, this does not mean
that their subfield subcodes are monomially equivalent. Nevertheless, our experiments show
that the parameters that we obtain when evaluating in the set X∗

N are strictly worse than the
ones obtained in the affine case with YN . Hence, in what follows we are going to focus on
evaluating in the set XN , although we note that the theory we are going to develop can be
adapted for the set X∗

N as well.
We denote the standard representatives of XN by XN , and we also denote PRS(N ,�) :=

PRS(XN ,�). With this notation, doubly extended Reed–Solomon codes are denoted by
PRS(qs,�d). Similarly to the case of doubly extended Reed–Solomon codes, given 1 ≤
d ≤ N , the parameters of the code PRS(N ,�d) are [N + 1, d + 1, N − d + 1]. In general,
for the codes PRS(N ,�) we have the parameters [N + 1, |�|,≥ N − d(�) + 1], where the
bound for the minimum distance is given by the smallest doubly extended Reed–Solomon
code that contains PRS(N ,�).

3 Subfield subcodes of codes over the projective line

Let Fqs ⊃ Fq and N , such that N − 1 | qs − 1. In this section, we want to obtain bases for
the subfield subcodes of the codes PRS(N ,�) with respect to this extension, which we will
denote by PRS(N ,�)q := PRS(N ,�) ∩ Fq . Given f ∈ S, we say that f evaluates to Fq

in XN whenever f (Q) ∈ Fq for all Q ∈ XN (similarly for polynomials in R evaluating in
YN ). The following lemma gives the key idea to obtain bases for PRS(N ,�)q .

Lemma 3.1 Let XN ⊂ P1. Then, f ∈ S evaluates to Fq in XN ⇐⇒ f (1, x1) evaluates to
Fq in YN and f (0, 1) is in Fq .

We will see now that we can take advantage of the knowledge from the affine case in
Theorem 2.2 by homogenizing and using Lemma 3.1. Given a degree d and a polynomial
f (x) ∈ R with deg( f ) ≤ d , its homogenization up to degree d is the homogeneous poly-
nomial f h(x0, x1) := xd0 f (x1/x0) ∈ Sd . Unless stated otherwise, when we consider the
code PRS(N ,�), we are always going to assume that we are homogenizing up to degree
d = d(�).

For a polynomial f ∈ Fq [x1], we choose Ta( f ) as the representative of the class in
Fqs [x1]/I (YN ) which has the exponents of each monomial reduced modulo qs − 1. Given
d ≥ 1, if the degree of Ta( f ) is lower than d , then we define T h

a ( f ) := (Ta( f ))h , which
we call homogenized trace. If we consider one of the traces that appear in Theorem 2.2, its
homogenized trace automatically satisfies that, when setting x0 = 1, the resulting polynomial
evaluates toFq inYN , i.e., the first condition fromLemma3.1 is satisfied.However, the second
condition, which means that the coefficient of xd1 in the homogenized trace must be in Fq ,
might not be satisfied. Because of this, the projective case is more involved than the affine
case, as we will see in the next example.
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Example 3.2 We continue with Example 2.1. By Theorem 2.2, the following polynomial
associated to I1 evaluates to F3:

T1(x) = x + x3.

Let d = 3 (the degree up to which we homogenize). If we consider the polynomial f =
T h
1 (x1) = x20 x1+ x31 , this is a homogeneous polynomial of degree 3, such that f (1, x1) takes

the same values as T1(x1) in F9, and f (0, 1) = 1 ∈ F3. By Lemma 3.1, we know that f
evaluates to F3 when evaluating in P1.

If ξ is a primitive element in F9, by Theorem 2.2, the following polynomial also evaluates
to F3:

T1(ξ x) = ξ x + ξ3x3.

However, if we consider g = T h
1 (ξ x1) = ξ x20 x1 + ξ3x31 , we see that g(0, 1) = ξ3 /∈ F3.

Therefore, g does not evaluate to F3.

Remark 3.3 If we have f ∈ Sd which evaluates to Fq , then x0 f ∈ Sd+1 also evaluates
to Fq . Moreover, if f (1, x1) evaluates to Fq in YN , then g = x0 f ∈ Sd+1 evaluates to
Fq in XN , even if f does not, because g(1, x1) = f (1, x1), which evaluates to Fq , and
g(0, 1) = 0 ∈ Fq . This already gives a hint about the fact that the sequence of dimensions
of the subfield subcodes is going to be non-decreasing.

With Lemma 3.1, we can consider polynomials in one variable that evaluate to Fq to
obtain polynomials in Sd that evaluate to Fq in XN in some cases. One could also consider
the polynomials in two variables that evaluate to Fq when evaluating in the points of A2. All
of those polynomials are going to evaluate to Fq when evaluating in points of P1. However,
there are bivariate polynomials that evaluate to Fq in P1, but not in A

2. For example, in
Example 3.2 we consider f = x20 x1 + x31 , which evaluates to F3 over P1, but if we consider
this polynomial over A2, then it is clear that it does not evaluate to F3. For example, if ξ is a
primitive element in F9, f (0, ξ) = ξ3 /∈ F3.

The following result shows how to use the previous ideas to obtain a basis for PRS(N ,�)q .

Theorem 3.4 Let � be a nonempty subset of {0, 1, . . . , N − 1} and let d = d(�). Set ξb a
primitive element of the field Fqnb . A basis for PRS(N ,�)q is given by the image by evXN

of the following polynomials.
If Id ⊂ �:

⋃

b∈B|Ib⊂�,b<d

{T h
b (ξ rb x

b
1 ) | 0 ≤ r ≤ nb − 1} ∪ {T h

d (xd1 )}.

If Id �⊂ �:
⋃

b∈B|Ib⊂�

{T h
b (ξ rb x

b
1 ) | 0 ≤ r ≤ nb − 1}.

Proof If we consider
⋃

b∈B|Ib⊂�,b<d

{T h
b (ξ rb x

b
1 ) | 0 ≤ r ≤ nb − 1},

these are functions which have linearly independent evaluations, because when evaluating in
[{1} × XN ] they are linearly independent by Theorem 2.2. These polynomials do not have
the monomial xd1 in their support. Therefore, by Lemma 3.1, they evaluate to Fq in XN .
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If Id �⊂ �, we are going to see that the evaluation of these polynomials generates the
whole subfield subcode. Let Sd,� ⊂ Sd be the linear space generated by {xd−i

0 xi1 | i ∈ �},
and let f ∈ Sd,� be such that its evaluation is in PRS(N ,�)q . If f (0, 1) = 0, then, using
Theorem 2.2, we know that we can generate the evaluation of f with these polynomials.
On the other hand, we claim that f (0, 1) �= 0 cannot happen in this case, which means
that the image by the evaluation map of the stated polynomials generate the whole subfield
subcode. If we had f (0, 1) �= 0, that would imply that f (1, x1) has the monomial xd1 in
its support. However, if Id �⊂ �, then we know that there is at least one a1 ∈ Id which is
not in �. Therefore, we cannot obtain the monomial xa11 in the support of f (1, x1), because
using Theorem 2.2 in YN , once you have xd1 in the support of f (1, x1), you should have
xa1 in its support for all a ∈ Id , because f (1, x1) should be a linear combination of traces.
Therefore, f (0, 1) �= 0 is not possible in this case, and the stated polynomials generate the
whole subfield subcode.

In the case Id ⊂ �, we have that d ∈ B, i.e., there is a minimal cyclotomic set whose
maximal representative is equal to d . By Lemma 3.1, we have that T h

d (xd1 ) evaluates to Fq ,
and it is linearly independent from the other polynomials that we consider, because it is the
only one that takes a nonzero value at [0 : 1].

We are going to show now that the evaluation of the given set of polynomials generates the
whole code in this case. Let f ∈ Sd,�, such that f evaluates to Fq . By Lemma 3.1, f (0, 1) is
in Fq . Hence, we can subtract T h

d (xd1 ) multiplied by f (0, 1) ∈ Fq and the evaluation would
still be in Fq . Therefore, we can assume that f does not have the monomial xd1 in its support,
i.e., f (0, 1) = 0. Then, we can use the affine case and argue that if f (1, x1) evaluates to Fq ,
by Theorem 2.2 it must be a linear combination of the polynomials in

⋃

b∈B|Ib⊂�,b<d

{Tb(ξ rb xb1 ) | 0 ≤ r ≤ nb − 1}.

The homogenized polynomials that we consider have the same evaluation as these
polynomials in [{1} × YN ], which completes the proof. ��
Remark 3.5 Wenote that we are obtaining a basis which is the image by the evaluationmap of
some homogeneous polynomials of degree d , which we already knew that should be possible,
because PRS(N ,�)q ⊂ PRS(N ,�).

Example 3.6 We continue with Examples 2.1 and 3.2. We consider N = 9 and � =
{0, 1, 2, 3}, which means that we have d(�) = 3. Looking at the cyclotomic sets from
Example 2.1, we see that I0 ∪ I1 ⊂ � (and these are the only complete minimal cyclotomic
sets in �). By Theorem 3.4, taking into account that in this case we have I3 = Id ⊂ �, we
see that the evaluation of the following polynomials is a basis for PRS(9,�)3:

T h
0 (x01 ) = x30 , T h

3 (x31 ) = x20 x1 + x31 .

We note that the second polynomial is precisely the polynomial f in Example 3.2.
If we take � = {0, 1, 2, 3, 4}, then we have d(�) = 4 and I0 ∪ I1 ∪ I4 ⊂ �. By

Theorem 3.4, the evaluation of the following polynomials is a basis for PRS(9,�)3:

T h
0 (x01 ) = x40 , T h

3 (x31 ) = x30 x1 + x0x
3
1 , T h

3 (ξ x31 ) = ξ3x30 x1 + ξ x0x
3
1 , T h

4 (x41 ) = x41 .

Corollary 3.7 The dimension of PRS(N ,�)q is the following:

dim PRS(N ,�)q =
{∑

b∈B:Ib⊂� nb − (nd − 1) = ∑
b∈B:Ib⊂�,b<d nb + 1 if Id ⊂ �

∑
b∈B:Ib⊂� nb otherwise

123



Entanglement-assisted quantum error-correcting codes from… Page 9 of 31   363 

Remark 3.8 Let d = d(�). If Id ⊂ �, we have dimension 1 more than in the affine case
with �\ {d}. On the other hand, if Id �⊂ �, we obtain a degenerate code with a 0 at the point
[0 : 1]. Therefore, the interesting case is when Id ⊂ �, which is the one in which we are
going to mainly focus in what follows.

With respect to the minimum distance, if we denote by wt(C) the minimum distance
of a code C ⊂ F

n
qs , we have wt(PRS(N ,�)) ≥ N − d(�) + 1, which implies that

wt(PRS(N ,�)q) ≥ N − d(�) + 1, because PRS(N ,�)q ⊂ PRS(N ,�). For the case
of subfield subcodes of doubly extended Reed–Solomon codes we obtain the following
corollary.

Corollary 3.9 Let d ∈ B. The parameters of PRS(qs,�d)q are [qs + 1,
∑

b∈B:b<d nb + 1,≥
qs − d + 1]. Moreover, the first nontrivial (dimension higher than 1) subfield subcode is
obtained when d = qs−1.

Proof The parameters are a special case of the previous results and discussions. For the last
statement, it is clear that qs/q = qs−1 is the lowest possible element in B (besides 0), and
d = qs−1 is the first degree, such that I1 = {1, q, q2, . . . , qs−1} ⊂ �d . ��

The bound used for the minimum distance of the subfield subcodes of doubly extended
Reed–Solomon codes is sharp in all cases we have checkedwith d ∈ B. The codes obtained in
this way have one more length and dimension than in the affine case, with the sameminimum
distance.

Example 3.10 If we look at the results from Example 3.6, we see that we obtained dimension
2 and 4 for PRS(9,�3)3 and PRS(9,�4)3. These are the values obtained with Corollary 3.9,
because 2 = n0 + 1 and 4 = n0 + n3 + 1. We would obtain codes with parameters [10, 2, 7]
and [10, 4, 6] over F3.

4 Dual codes of the previous subfield subcodes

To compute the dual codes of the previous subfield subcodes, we are going to use Delsarte’s
Theorem (Delsarte 1975).

Theorem 4.1 Let C ⊂ F
n
qs be a linear code:

(C ∩ F
n
q)

⊥ = Tr(C⊥),

where Tr : Fqs → Fq , which maps x to x + xq + · · · + xq
s−1

, is applied componentwise to
C⊥.

To use this result, we need to compute the dual of the codes PRS(N ,�). It is well known
that PRS(qs,�d)

⊥ = PRS(qs,�qs−1−d) (the dual of a doubly extended Reed–Solomon
code is another doubly extended Reed–Solomon code). However, computing the dual of the
codes PRS(N ,�) in general can be involved. Nevertheless, we can easily compute the dual
in some cases. To do so, we are going to state the metric structure of these codes first. Part of
the following result already appears in Galindo et al. (2015, Prop. 1) and López (2021, Lem.
7.1).
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Lemma 4.2 Let γ be a non-negative integer, and N, such that N − 1 | qs − 1. We consider
the monomial xγ ∈ Fqs [x]. We have the following:

∑

z∈YN
xγ (z) =

⎧
⎪⎨

⎪⎩

N if γ = 0,

0 if γ > 0 and γ �≡ 0 mod (N − 1),

N − 1 if γ > 0 and γ ≡ 0 mod (N − 1).

Proof Let ξ ∈ Fqs be an element of order N − 1, which exists, because N − 1 | qs − 1.
Then, YN = {ξ0, ξ1, . . . , ξ N−2} ∪ {0}. If γ = 0, xγ = 1, and the sum is equal to |YN | = N .
If γ > 0 and γ ≡ 0 mod (N − 1), then xγ (z) = 1 for all z ∈ YN\{0}, and∑z∈YN xγ (z) =
|YN | − 1 = N − 1. Finally, if γ > 0 and γ �≡ 0 mod (N − 1), we have

∑

z∈YN
xγ (z) =

N−2∑

i=0

(ξ i )γ = ξγ (N−1) − 1

ξγ − 1
= 0.

��
Proposition 4.3 Let xα0

0 xα1
1 and xβ0

0 xβ1
1 be two monomials in Fqs [x0, x1] of degree dα and

dβ , respectively. Then, we have the following for the product of the evaluations over XN . If
α1 + β1 = 0:

evXN (xα0
0 xα1

1 ) · evXN (xβ0
0 xβ1

1 ) =
{
N + 1 if α0 + β0 = 0,

N if α0 + β0 > 0.

If α1 + β1 > 0:

evXN (xα0
0 xα1

1 ) · evXN (xβ0
0 xβ1

1 ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N if α1 + β1 ≡ 0 mod (N − 1), α0 + β0 = 0,

N − 1 if α1 + β1 ≡ 0 mod (N − 1), α0 + β0 > 0,

1 if α1 + β1 �≡ 0 mod (N − 1), α0 + β0 = 0,

0 if α1 + β1 �≡ 0 mod (N − 1), α0 + β0 > 0.

Proof First, we expand the scalar product as a sum over XN = {[1 : z] | z ∈ YN } ∪ {[0 :
1]} ⊂ P1:

evXN (xα0
0 xα1

1 ) · evXN (xβ0
0 xβ1

1 ) =
∑

P∈XN

xα0+β0
0 xα1+β1

1 (P) =
∑

z∈YN
zα1+β1 + ε,

where ε is equal to 1 if α0 + β0 = 0 and equal to 0 if α0 + β0 > 0 (corresponding to the
evaluation at [0 : 1]). The result is obtained using Lemma 4.2. ��

If p does not divide N , we have that the evaluation of xα1
1 with α1 > 0 is not orthogonal to

the evaluation of xβ1
1 for any β1. This means that the dual code PRS(N ,�)⊥ does not have a

basis obtained by the evaluation of monomials unless wt(PRS(N ,�)) = 1. This is because
if we have wt(PRS(N ,�)) > 1, then PRS(N ,�)⊥ cannot be degenerate. In particular, there
must be a vector in PRS(N ,�)⊥, such that the coordinate associated to the point [0 : 1] is
nonzero, which is obtained by evaluating a polynomial with some power of x1 in its support,
but it cannot be just a single power of x1, because its evaluation would not be orthogonal to
the evaluation of xd1 . Hence, the dual code is not generated by the image by the evaluation
map of monomials.

When p | N , as the next result shows, the previous result gets simplified, and in Propo-
sition 4.10 we will see that in this case the dual code can be generated by the evaluation of
monomials.

123



Entanglement-assisted quantum error-correcting codes from… Page 11 of 31   363 

Corollary 4.4 If p | N, then:

evXN (xα0
0 xα1

1 ) · evXN (xβ0
0 xβ1

1 )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if α1 + β1 = 0, α0 + β0 = 0 or

α1 + β1 �≡ 0 mod (N − 1), α0 + β0 = 0,

−1 if α1 + β1 ≡ 0 mod (N − 1), αi + βi > 0, i = 0, 1,

0 otherwise.

Remark 4.5 One way to have p | N is to consider a subfield of Fqs , in which case we are
going to obtain a doubly extended Reed–Solomon code over that subfield. However, we may
also have p | N for different subgroups of F∗

qs . For example, if we consider qs = 24 = 16,
then 5 divides qs − 1. Therefore, we can take N = 6, which is divisible by 2, but Y6 is not a
subfield of F16.

For obtaining a basis for the dual code we will need to work with non-homogeneous
polynomials. To understand linear independence in that situation we are going to introduce
now a universal Gröbner basis for the vanishing ideal I (XN ). Particular cases of the following
result were already present in Nakashima and Matsui (2016).

Proposition 4.6 A universal Gröbner basis for the ideal I (XN ) is

I (XN ) = 〈x20 − x0, x
N
1 − x1, (x0 − 1)(x1 − 1)〉.

Therefore, in(I (XN )) = 〈x20 , xN1 , x0x1〉 and {1, x0, x1, x21 , . . . , xN−1
1 } is a basis for the

quotient ring S/I (XN ).

Proof First, we are going to show that these polynomials generate the vanishing ideal I (XN ).
Given any point in XN , it is clear that it satisfies the equations. Reciprocally, any point
satisfying this equations, because of the generator x20 − x0, must have the first coordinate
equal to 0 or 1. If the first coordinate is equal to 0, because of the generator (x0 − 1)(x1 − 1),
the last coordinate must be 1, i.e., it must be the point [0 : 1] ∈ XN . If the first coordinate
is equal to 1, then, because of the generator xN1 − x1, the second coordinate is in YN , which
means that the point is in XN as well.

We have proved that the variety defined by this ideal is XN . It is clear that the variety
defined by this ideal over the algebraic closure Fqs is the same as the variety defined over Fqs .
By Seidenberg’s Lemma (Kreuzer and Robbiano 2000, Prop. 3.7.15), this ideal is radical.
Therefore, by Hilbert’s Nullstellensatz applied in the algebraic closure, we have that this
ideal is the vanishing ideal of the variety that it defines, i.e., is the vanishing ideal of XN .

To show that all the S-polynomials of the generators reduce to 0, we just need to use that
if the greatest common divisor of the initial monomials of two polynomials is 1, then their
S-polynomial reduces to 0 by Cox et al. (2015, Prop. 4, Chapter 2, Section 9). In particular,
if two polynomials depend on different variables, their S-polynomial reduces to 0. And if f
and g share a common factor w, then S( f , g) = wS( f /w, g/w). Using this, it is easy to
see that all the S-polynomials reduce to 0 in this case, for any monomial order. Thus, these
generators form a universal Gröbner basis. The initial ideal follows from this fact, and by
Macaulay’s classical result (Eisenbud 1995, Thm. 15.3) we obtain that the monomials not
contained in the initial ideal form a basis for the quotient ring. ��
Remark 4.7 Because of the first generator of the previous ideal, any power of x0 is equivalent
to x0 in the quotient ring. Therefore, we have x

α0
0 xα1

1 ≡ x0x
α1
1 mod I (XN ) if α0 > 0. This is
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whywe are going to assume α0 = 1 for any monomial divisible by x0 in what follows, except
when we want to remark that we can obtain a code by evaluating homogeneous polynomials
of a certain degree.

The following result allows us to express any polynomial in S/I (XN ) in terms of the basis
in Proposition 4.6.

Lemma 4.8 Let a0, a1 be integers, with a0 > 0. We have that

xa00 xa11 ≡ x0 + xa11 − 1 mod I (XN ).

Proof It is easy to check that both polynomials have the same evaluation in XN , which implies
that they are in the same class modulo I (XN ). ��
Corollary 4.9 The following monomials constitute a basis for the quotient S/I (XN ):

{xN1 , x0, x0x1, . . . , x0x
N−1
1 }.

Moreover, every set of the form {xd1 , x0, x0x1, . . . , x0x
d−1
1 } with 1 ≤ d ≤ N is linearly

independent.

Proof It is easy to check that these monomials are linearly independent by Lemma 4.8 and
Proposition 4.6. The fact that for d = N this set is a basis follows from the cardinality of the
set and the dimension of the quotient ring. ��

Now, we have the tools necessary to deal with the dual as an evaluation code over the
projective line. In what follows we are going to assume that p | N . This is because, by
Corollary 4.4, the metric structure is going to be similar to the one of doubly extended
Reed–Solomon codes, and in this case the dual code will be generated by the evaluation of
monomials. For the following result it will be useful to introduce the definition �⊥ = {α ∈
{0, 1, . . . , N − 1} | α �= N − 1 − h, h ∈ �}.
Proposition 4.10 Let N be a non-negative integer, such that N − 1 | qs − 1 and p | N. Let
� ⊂ {0, 1, . . . , N −1} and let d = d(�). Then, PRS(N ,�)⊥ has a basis obtained by taking
the image by evXN of the following monomials:

{x0xα
1 | α ∈ �⊥} ∪ {xN−1−d

1 }. (2)

Moreover, if N − 1 /∈ �, we can also obtain the same basis by taking the image by evXN of
the following monomials of degree 2(N − 1) − d (which allows us to get the dual code as an
evaluation code of homogeneous polynomials):

{x2(N−1)−d−α
0 xα

1 | α ∈ �⊥} ∪ {x2(N−1)−d
1 }. (3)

If N − 1 ∈ �, then the following set of homogeneous polynomials of degree 2N − 1 give the
same image as the set in item (2):

{x2N−1−α
0 xα

1 | α ∈ �⊥} ∪ {x2N−1
1 + x2N−1

0 − xN−1
0 xN1 }. (4)

Proof Using Corollary 4.4 it is easy to see that the evaluation of the monomials in (2) is
orthogonal to the vectors in PRS(N ,�). When N − 1 /∈ �, using Lemma 4.8 it is easy to
see that the evaluation of these monomials is linearly independent, and the dimension of this
subspace is the same as the dimension of the dual code. If N − 1 ∈ �, then xN−1−d

1 = 1,
and it is easy to see that the monomials that we obtain are linearly independent and generate
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the dual code. When N − 1 /∈ �, the evaluation of the set (3) is clearly the same. Finally, if
N − 1 ∈ �, we have that

x2N−1
1 + x2N−1

0 − xN−1
0 xN1 ≡ x1 + x0 − x0x1 ≡ 1 mod I (P1).

Therefore, the evaluation of the set (4) is the same as the one obtained with (2). ��
We have the next result for the case when p | N , which generalizes what we know about

the duality in the case of doubly extended Reed–Solomon codes. We note that, as we are
evaluating all the monomials of degree d in the next result, and the set of evaluation points
is a complete intersection, the theory from Duursma et al. (2001) and González-Sarabia and
Rentería (2004) could also be used to study the codes PRS(N ,�d) and their duals.

Corollary 4.11 Let �d = {0, 1, . . . , d} and �N−1−d = {0, 1, . . . , N −1−d}. If p | N, then
we have that PRS(N ,�d)

⊥ = PRS(N ,�N−1−d).

Proof We can consider the monomials in (2), homogenizing up to degree N −1−d with the
variable x0. Taking into account that in this case �⊥ ∪ {N − 1 − d} = �N−1−d we obtain
the result. ��

With the evaluation map evXN , if we consider the trace function T : S → S, defined

by f → f + f q + · · · + f q
s−1

, then it is easy to verify that evXN ◦ T = Tr ◦ evXN (Tr
was defined in Theorem 4.1). Then, we see that if PRS(N ,�)⊥ = evXN (〈{ f1, f2, . . . , fl}〉),
using Theorem 4.1 and the previous observation we get that

(PRS(N ,�)q)
⊥ := (PRS(N ,�)q)

⊥ = Tr(evXN (〈{ f1, f2, . . . , fl}〉))
= evXN (T (〈{ f1, f2, . . . , fl}〉)).

Remark 4.12 Taking into account that T is linear, then it is clear that in this situation
(PRS(N ,�)q)

⊥ is spanned by the image by the evaluation of the polynomials T (γ fi ),
γ ∈ Fqs , i = 1, . . . , l.

Even if fi , for i = 1, . . . , l, are monomials, the dual code will be generated by traces of
those monomials by Remark 4.12, which in general are going to be non-homogeneous poly-
nomials.We have introduced the vanishing ideal fromProposition 4.6 precisely to understand
linear independence of sets of monomials of different degree over XN . In order to state a
basis for (PRS(N ,�)q)

⊥ we will need the following lemma.

Lemma 4.13 Let � ⊂ {0, 1, . . . , N − 1} and 0 < a �= N − 1. Then, we have that Ia ⊂
� ⇐⇒ |IN−1−a ∩ �⊥| = 0.

Proof It is clear that we have a bijection between Ia and I−a , given by h 	→ −h. In ZN we
have that −h ≡ N − 1− h mod N − 1 if h �= 0. Hence, we get a bijection between Ia and
IN−1−a given by h 	→ N − 1 − h. Because of the definition of �⊥, we see that if h ∈ �,
then N − 1 − h /∈ �⊥. Thus, it is clear that if Ia ⊂ �, then |IN−1−a ∩ �⊥| = 0, and vice
versa. ��
Theorem 4.14 Let � be a nonempty subset of {0, 1, . . . , N − 1} and let d = d(�). Set ξa a
primitive element of the field Fqna with Ta(ξa) �= 0 (this can always be done Cohen 1990).
A basis for (PRS(N ,�)q)

⊥ is given by the image by evXN of the following polynomials.
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If Id ⊂ �:
⋃

a∈A|Ia∩�⊥�=∅
{Ta(ξ ra x0xa1 ) | 0 ≤ r ≤ na − 1} ∪

{TN−1−d(ξ
r
N−1−d x

N−1−d
1 ) | 0 ≤ r ≤ nN−1−d − 1}.

If Id �⊂ �:
⋃

a∈A|Ia∩�⊥�=∅
{Ta(ξ ra x0xa1 ) | 0 ≤ r ≤ na − 1} ∪ {TN−1−d(ξN−1−d x

N−1−d
1 )}.

Proof In Remark 4.12 we saw that it is enough to consider the traces of multiples of the
monomials whose images span PRS(N ,�)⊥. Therefore, we have that the traces of multiples
of the monomials in (2) span Tr(PRS(N ,�)⊥) = (PRS(N ,�)q)

⊥. Moreover, it is enough
to consider the following traces for Ia with Ia ∩ �⊥ �= ∅

{Ta(ξ ra x0xa1 ), 0 ≤ r ≤ na − 1}
because they are linearly independent (a dependence relationwould give a polynomial relation
on ξa of degree less than na) and there are na of them, which is the maximum dimension that
we can get with na monomials. The same reasoning shows that it is enough to consider the
following traces for the monomial xN−1−d

1 :

{TN−1−d(ξ
r
N−1−d x

N−1−d
1 ), 0 ≤ r ≤ nN−1−d − 1}, (5)

which are linearly independent between them as well.
If Id ⊂ �, by Lemma 4.13 we have that |IN−1−d ∩ �⊥| = ∅. Hence, when we consider

all of these sets of polynomials together, they are independent, because between sets cor-
responding to different cyclotomic sets Ia , we have polynomials with disjoint support (the
monomials that we are considering are linearly independent in S/I (XN ) by Corollary 4.9).

On the other hand, when Id �⊂ �, by Lemma 4.13 we know that there is at least one
element h ∈ IN−1−d ∩ �⊥. The argument for the previous case works in this case, except
when considering the traces of polynomials associated to IN−1−d and the polynomials in
(5), because by Lemma 4.8, we will have the same powers of x1. However, if from the later
set of polynomials we only consider TN−1−d(ξN−1−d x

N−1−d
1 ), then the linear independence

is clear, because this polynomial is equal to TN−1−d(ξN−1−d) �= 0 at [0 : 1] (because of the
choice of the primitive elements), while the rest of polynomials that we are considering are
0 at [0 : 1]. Moreover, with these polynomials we can generate the rest of the polynomials
in (5) taking into account Lemma 4.8:

Ta(ξ ra x0xa1 ) = ξ ra (x0 + xa1 − 1) + ξ
qr
a (x0 + xqa1 − 1) + · · · + ξ

qna−1r
a (x0 + xq

na−1a
1 − 1)

= Ta(ξ ra )(x0 − 1) + Ta(ξ ra xa1 ).

With r = 1 we see that we can generate (x0−1)with the polynomials we are considering,
and with (x0 − 1) we can generate the rest of polynomials in (5), because Ta(ξ ra ) ∈ Fq . ��

In the case Id(�) �⊂ � of the previous result, we have seen that we can generate
(x0 − 1). The evaluation of this polynomial on P1 gives a codeword with Hamming weight
1, which means that (PRS(N ,�)q)

⊥ has minimum distance 1. This is equivalent to having
that PRS(N ,�)q is a degenerate code (it has a common zero in the coordinate associated to
the point [0 : 1]). Once again, we see that the interesting case for us is when Id(�) ⊂ �.
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Example 4.15 We continue with Example 3.2. Let �4 = {0, 1, 2, 3, 4}, which implies
d(�4) = 4. We are going to obtain a set of polynomials, such that its image by the evaluation
map is a basis for (PRS(9,�4)3)

⊥. We have that�⊥
4 = {0, 1, 2, 3}. The minimal cyclotomic

sets Ia with Ia ∩ �⊥ �= ∅ are I0, I1 and I2. As in the previous examples, if ξ is a primitive
element of F9, by Theorem 4.14, we obtain the following set of polynomials:

T0(x0) = x0, T1(x0x1) = x0x1 + x30 x
3
1 , T1(ξ x0x1) = ξ x0x1 + ξ x30 x

3
1

T2(x0x21 ) = x0x
2
1 + x30 x

6
1 , T2(ξ x0x21 ) = ξ x0x

2
1 + ξ3x30 x

6
1 , T4(x41 ) = x41 .

In all the previous expressions, we can reduce the exponent of x0 to 1 and the evaluation
would not change.

As a consequence of Theorem 4.14, we obtain directly an explicit formula for the
dimension of (PRS(N ,�)q)

⊥ without using the dimension of the primary codes from
Corollary 3.7.

Corollary 4.16 Let � ⊂ {0, 1, . . . , N − 1} and let d = d(�). The dimension of
(PRS(N ,�)q)

⊥ is equal to

dim (PRS(N ,�)q)
⊥ =

{∑
a∈A|Ia∩�⊥�=∅ na + nd if Id ⊂ �

∑
a∈A|Ia∩�⊥�=∅ na + 1 if Id �⊂ �

Now, we are going to turn our attention to the minimum distance of the dual code
(PRS(N ,�)q)

⊥. In the affine case, a BCH-type bound has been used frequently for the
minimum distance of the duals of the subfield subcodes of Reed–Solomon codes. If one con-
siders the code RS(N ,�)with� = Ia0 ∪Ia1 ∪· · ·∪Ial a union of cyclotomic sets, then this
code is Galois invariant in the sense of Bierbrauer (2002), i.e., RS(N ,�) = (RS(N ,�))q .
By Bierbrauer (2002, Thm. 4), we have that Tr(RS(N ,�)) = RS(N ,�)q . We can
write Theorem 4.1 in the following way: C⊥ ∩ F

n
q = Tr(C)⊥. Therefore, we have that

(
RS(N ,�)q

)⊥ = (
RS(N ,�)⊥

)
q . For (RS(N ,�)⊥)q , it is easy to see that we have a BCH-

type bound, because we can consider the generator matrix of RS(N ,�) as a pseudo-parity
check matrix for the code (RS(N ,�)⊥)q (as we did with the matrix in (1) for BCH codes).
If we have t consecutive exponents in �, we have a Vandermonde matrix as a submatrix of
the generator matrix for RS(N ,�) and we get that wt

(
(RS(N ,�)q)

⊥) ≥ t + 1.
In the projective case, arguing in a similar way, we get that, if we have t consecutive

exponents in �, we have the BCH-type bound wt
(
(PRS(N ,�)⊥)q

) ≥ t +1. However, even
if � is a union of cyclotomic sets, we will see in Remark 4.23 and Example 4.24 that in the
projective case we do not have in general that PRS(N ,�) is Galois invariant, and thus we do
not have the equality between (PRS(N ,�)⊥)q and (PRS(N ,�)q)

⊥ in general. Nevertheless,
we can still use the affine case to get a bound for the minimum distance. If we have a code
C ⊂ F

n
q , we are going to denote by (C, 0) := {(u1, . . . , un, 0) ∈ F

n+1
q | u = (u1, . . . , un) ∈

C}. In what follows, we are going to assume that the coordinate associated to the point [0 : 1]
is the last one. We recall thatA (resp. B) is the set of minimal representatives (resp. maximal
representatives) of the minimal cyclotomic sets. We are going to denote �′ := �\{d}, and
(�′)I = ⋃

b∈B,b<d|Ib⊂� Ib ⊂ �′ as before.

Proposition 4.17 Let� ⊂ {0, 1, . . . , N −1}. We assume that d(�) ∈ B with Id(�) ⊂ �. If t
is the number of consecutive exponents in (�′)I, then we have that wt

(
(PRS(N ,�)q)

⊥) ≥
t + 1.
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Proof We assume that the point [0 : 1] corresponds to the last coordinate. We have
PRS(N ,�)q ⊃ (RS(N ,�′)q , 0), which implies

(PRS(N ,�)q)
⊥ ⊂ (RS(N ,�′)q , 0)⊥ = ((RS(N ,�′)q)⊥, 0) + 〈(0, . . . , 0, 1)〉.

We know that (0, . . . , 0, 1) /∈ (PRS(N ,�)q)
⊥, because that would imply that

PRS(N ,�)q is degenerate, and that is not the case because of the assumptions that we
have made. Thus, any vector in (PRS(N ,�)q)

⊥ must belong to (RS(N ,�′)q)⊥ after punc-
turing the last coordinate, and therefore, the weight of any vector in (PRS(N ,�)q)

⊥ must
be at least t + 1 because of the BCH-type bound for (RS(N ,�′)q)⊥. ��

As a corollary, we have the following result about the duals of the subfield subcodes of
doubly extended Reed–Solomon codes.

Corollary 4.18 Let�d = {0, 1, . . . , d}with d ∈ B. If t is the number of consecutive exponents
in (�′

d)I, the parameters of (PRS(qs,�d)q)
⊥ are [qs + 1,

∑
a∈A|Ia∩�⊥�=∅ na,≥ t + 1].

This estimate would give codes with length 1 more than in the affine case, but same
dimension and same bound for the minimum distance. However, the bound for the minimum
distance is not sharp in general and we are able to improve upon the affine case in many
examples. For instance, in the next result we show that when |Id | = 1 we have a better
estimate for the minimum distance.

Proposition 4.19 Let � ⊂ {0, 1, . . . , N − 1}, such that |Id(�)| = 1. Then, PRS(N ,�I) is
Galois invariant, we have that (PRS(N ,�I)⊥)q = (PRS(N ,�I)q)

⊥ = (PRS(N ,�)q)
⊥,

and, if there are t consecutive exponents in �I, the parameters of (PRS(N ,�)q)
⊥ are

[N + 1,
∑

a∈A|Ia∩�⊥
I �=∅ na + 1,≥ t + 1].

Proof Let d = d(�).We have that PRS(N ,�I) is generated by the evaluation ofmonomials.
Because of the fact that �I is a union of cyclotomic sets, we can divide the monomials into
sets corresponding to different minimal cyclotomic sets. For a �= d we have the monomials

{x0xα
1 | α ∈ Ia ⊂ �}.

If we consider these monomials to the power of q , the set remains invariant in S/I (P1),
because the exponents of x1 are in a cyclotomic set, and the exponent of x0 does not change
the evaluation. For Id we have that xq(N−1−d)

1 ≡ xN−1−d
1 mod I (P1), because |Id | = 1.

Therefore, the set of monomials is invariant under taking powers of q , which implies that
PRS(N ,�I) = (PRS(N ,�I))q . Because of the previous discussion, we have that being
Galois invariant implies in this case that (PRS(N ,�I)⊥)q = (PRS(N ,�I)q)

⊥. Taking into
account that PRS(N ,�I)q = PRS(N ,�)q because of Theorem 3.4, the parameters are clear
from Theorem 4.14 and the BCH-type bound. ��

In many situations, the previous result gives codes with higher length and dimension
than in the affine case. Assuming the hypotheses of the previous result, the affine code with
(RS(N ,�)q)

⊥ would have parameters [N ,
∑

a∈A|Ia∩�⊥
I �=∅ na,≥ t + 1], meanwhile the

projective code (PRS(N ,�)q)
⊥ would have parameters [N + 1,

∑
a∈A|Ia∩�⊥

I �=∅ na + 1,≥
t + 1].

These codes can also be compared to (RS(N ,�′)q)⊥, with �′ = � \ {d(�)}. Taking
into account that |Id | = 1, this code has parameters [N ,

∑
a∈A|Ia∩�⊥

I �=∅ na + 1,≥ t ′ + 1],
where t ′ is the number of consecutive exponents in �′. We see that this code has the same
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dimension as (PRS(N ,�)q)
⊥. However, the bound for the minimum distance is worse than

the one for (PRS(N ,�)q)
⊥.

The following result shows many situations in which we can use Proposition 4.19 besides
the obvious case with � = {0}.
Lemma 4.20 Let q > 2. If dλ := λ(N − 1)/(q − 1) ∈ N, for some λ, 1 ≤ λ ≤ q − 1, then
|Idλ | = 1.

Proof We only have to observe that

λ
N − 1

q − 1
q − λ

N − 1

q − 1
= λ(N − 1) ≡ 0 mod N − 1.

��
Remark 4.21 If q − 1 | N − 1, then with the previous result we obtain q − 1 cyclotomic sets
with cardinality one besides I0. For example, if N = qs , then we directly have q−1 | N −1.
However, that is not the only case. For example we can consider qs = 38 and N = 83. In
that situation it can be checked that q − 1 = 2 | 82 = N − 1, and we have that |I41| = 1. In
this situation, when we have q − 1 | N − 1, the previous result is actually a characterization
of when we have |Id | = 1:

|Id | = 1 ⇐⇒ dq ≡ d mod N − 1 ⇐⇒ d(q − 1) = λ(N − 1) = λ(q − 1)
N − 1

q − 1

⇐⇒ d = λ
N − 1

q − 1
, for some 1 ≤ λ < q − 1.

Example 4.22 We consider the field extension F16 ⊃ F4, which gives the following minimal
cyclotomic sets:

I0 = {0}, I1 = {1, 4}, I2 = {2, 8}, I3 = {3, 12}, I5 = {5},
I6 = {6, 9}, I7 = {7, 13}, I10 = {10}, I11 = {11, 14}, I15 = {15}.

We see that we have |I10| = 1. If we take � = {0, 1, 4, 10} = I0 ∪ I1 ∪ I10, then
�⊥ = {0, 1, . . . , N − 1}\{I15 ∪ I11 ∪ I5} and we can use Corollary 4.16 to compute the
dimension. All the cyclotomic sets, besides I5, I11 and I15, have nonzero intersection with
�⊥, and we have Id(�) = I10 ⊂ �. Hence, by Corollary 4.16, dim (PRS(N ,�)q)

⊥ =
(n0 + n1 + n2 + n3 + n6 + n7 + n10) + n10 = 13. For the minimum distance, we have t = 2
consecutive elements in�I = �, which gives the following parameters for (PRS(N ,�)q)

⊥:
[17, 13,≥ 3].

We can do the same for � = {0, 1, 2, 4, 8, 10} = I0 ∪ I1 ∪ I2 ∪ I10, and we obtain the
parameters [17, 11,≥ 4]. The true parameters are [17, 13, 3] and [17, 11, 4], which lengthen
the parameters of the affine case [16, 12, 3] and [16, 10, 4]. We see that the bound for the
minimum distance coincides with the real minimum distance in this case.

Remark 4.23 If we do not assume in Proposition 4.19 that |Id | = 1, then, if d = d(�) ∈ B
andId ⊂ � (which is the interesting case in the projective setting),wewill have the evaluation
of the monomial xd1 in PRS(N ,�), and also the evaluation of at least one monomial xd−a

0 xa1
with a ∈ Id\{d}. We know that d ≡ qra mod N − 1 for some r > 0. Thus, we have the

image of xd−qr−1a
0 xq

r−1a
1 in PRS(N ,�), but if we take this monomial to the power of q , we

get xq(d−qr−1a)
0 xd1 �≡ xd1 mod I (P1). It is not hard to check that we do not have the image

of this monomial in PRS(N ,�), which implies that PRS(N ,�) is not Galois invariant. In
the following example we show how this affects the bound for the minimum distance.
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Example 4.24 We continue with Example 4.22. We can consider � = {0, 1, 2, 3, 4}, which
gives �I = I0 ∪ I1. However, we do not have |I4| = 1 and Proposition 4.19 does not hold
in this case. For instance, there are t = 2 consecutive elements in �, but the parameters
of (PRS(N ,�)q)

⊥ are [17, 15, 2], and 2 < t + 1 = 3. On the other hand, we have that
(�′)I = I0, which only has t = 1 consecutive elements, and Proposition 4.17 would give
the parameters [17, 15,≥ 2].

5 Applications to EAQECCs

This section is devoted to providing quantum codes from the linear codes developed in the
previous section. Namely, we will construct EAQECCs using the CSS construction (Galindo
et al. 2019b, Thm. 4) and the Hermitian construction (Galindo et al. 2019b, Thm. 3), as well
as asymmetric EAQECCs (Galindo et al. 2020).

5.1 Euclidean EAQECCs

In this section, we will be interested in obtaining EAQECCs using the CSS construction
(Galindo et al. 2019b, Thm. 4). Given a nonempty set U ⊂ F

n
q , we denote by wt(U ) the

number min{wt(v) | v ∈ U \ {0}}, extending the notation that we have been using only for
linear codes until now.

Theorem 5.1 (CSS Construction) Let Ci ⊂ F
n
q be linear codes of dimension ki , for i = 1, 2.

Then, there is an EAQECC with parameters [[n, κ, δ; c]]q , where
c = k1 − dim(C1 ∩ C⊥

2 ), κ = n − (k1 + k2) + c, and

δ = min
{
wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
,wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))}
.

We are going to introduce some new notation for the codes we are going to use. In what
follows, we are assuming that p | N .

Definition 5.2 LetA = {a0 = 0 < a1 < · · · < a j }, the set of minimal representatives of the
minimal cyclotomic sets. We are going to consider a set � = ⋃t−1

i=0 Iai ∪ {at }, i.e., the union
of consecutive minimal cyclotomic sets with minimal representatives a0, . . . , at−1, and the
minimal element at . For such a set �, we are going to consider the code D(N ,�) defined
as the linear code generated by {evXN (x0xα

1 ) | α ∈ �\{at }} ∪ {evXN (xat1 )}.

Remark 5.3 If we look at the basis for the dual codes from Proposition 4.10, we see that
D(N ,�) = PRS(N ,�∗)⊥, with �∗ = {0, 1, . . . , N − 1}\⋃t−1

i=0 IN−1−ai . In particular, the
codes we are considering are not degenerate.

Although the previous remark shows that we can use the notation PRS(N ,�∗)⊥ instead of
D(N ,�), in what follows we are going to useD(N ,�), because this will be the appropriate
notation for Sect. 6. This allows us to make reference to the following proofs directly from
Sect. 6, which helps to avoid repetition.

Remark 5.4 By the definitions, it is clear that D(N ,�) = (RS(N ,�′), 0) + 〈evXN (xat1 )〉,
where�′ = �\{at }. Thismeans that dimD(N ,�) = dim RS(N ,�′)+1 = dim RS(N ,�).
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We also have that dim (D(N ,�)⊥)q = dim PRS(N ,�∗)q = N + 1 − ∑t
i=0 nai from

Corollary 3.7. If GN ,� is a generator matrix of RS(N ,�), then we have that
⎛

⎜
⎜
⎜
⎝

GN ,�

0
...

0
evYN (xat ) 1

⎞

⎟
⎟
⎟
⎠

is a generator matrix of D(N ,�). We see that this does not correspond to any standard
lengthening technique for linear codes. On the other hand, the BCH-type bound gives
wt((D(N ,�)⊥)q) ≥ wt(D(N ,�)⊥) ≥ at + 2.

Theorem 5.5 LetA = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal representatives
of the cyclotomic sets Iai , 0 ≤ i ≤ z, of {0, 1, . . . , N − 1} with respect to q. Let � =
⋃t−1

i=0 Iai ∪ {at }, such that RS(N ,�′′) ⊂ RS(N ,�′′)⊥, where �′′ = ⋃t
i=0 Iai . Then, we

can construct an EAQECC with parameters [[n, κ,≥ δ; c]]q , where n = N + 1, κ =
N + 1 − 2

(∑t
i=0 nai

)+ c, δ = at + 2, and c ≤ 1.

Proof We are going to consider the code C1 = C2 = ((D(N ,�)⊥)q)
⊥ for the CSS Con-

struction 5.1. We have dim ((D(N ,�)⊥)q)
⊥ = N + 1 − dim (D(N ,�)⊥)q = N + 1 −

dim PRS(N ,�∗)q = ∑t
i=0 nai by Remark 5.4. Remark 5.4 also gives wt((D(N ,�)⊥)q) ≥

at + 2.
For the parameter c, we claim that dim

(
(D(N ,�)⊥)q ∩ ((D(N ,�)⊥)q)

⊥) ≥
dim(RS(N ,�′′)q , 0) − 1 = ∑t

i=0 nai − 1, which gives c ≤ 1. Let �′ = �\{at }. By
Remark 5.4 we have D(N ,�) = (RS(N ,�′), 0) + 〈evXN (xat1 )〉.

We consider v ∈ (RS(N ,�)⊥, 0). Then, v is orthogonal to (RS(N ,�′), 0) (taking into
account that RS(N ,�′) ⊂ RS(N ,�)), and it is also orthogonal to evXN (xat1 ), because the last
coordinate of v is 0, which means that v · evXN (xat1 ) = v · evXN (x0x

at
1 ), and evXN (x0x

at
1 ) ∈

(RS(N ,�), 0). Therefore, v ∈ D(N ,�)⊥. Taking into account the dimension and the fact
that the codes D(N ,�)⊥ are not degenerate, we can write D(N ,�)⊥ = (RS(N ,�)⊥, 0) +
〈w〉, where w is a vector with a nonzero last entry.

We consider a basis for (D(N ,�)⊥)q now, and we can also assume that all the vec-
tors in the basis, besides one vector w′, have 0 as their last coordinate. Taking into
account that (D(N ,�)⊥)q is not degenerate, this means that we have (D(N ,�)⊥)q =
((RS(N ,�)⊥)q , 0) + 〈w′〉 for some vector w′ with nonzero last coordinate. In this case we
have (RS(N ,�)⊥)q = (RS(N ,�′′)⊥)q , because �⊥ and �′′⊥ contain the same complete
minimal cyclotomic sets (which is what matters to compute the subfield subcode of the dual,
this can be seen using Theorem 2.2 and Galindo and Hernando 2015, Prop. 3). Moreover, we
have that RS(N ,�′′)q ⊂ (RS(N ,�′′)⊥)q = (RS(N ,�′′)q)⊥, because this code is Galois
invariant by the reasoning after Corollary 4.16.

Thus, we have seen that (D(N ,�)⊥)q ⊃ ((RS(N ,�′′)⊥)q , 0) ⊃ (RS(N ,�′′)q , 0). On
the other hand, we have

((D(N ,�)⊥)q)
⊥ = (

(PRS(N ,�′′)q , 0) + 〈(0, 0, . . . , 0, 1)〉) ∩ 〈w′〉⊥.

Note that (0, 0, . . . , 0, 1) /∈ 〈w′〉⊥, because w′ has a nonzero last coordinate. Hence, we
can consider a basis for ((D(N ,�)⊥)q)

⊥ formed by (dim RS(N ,�′′)q − 1) vectors ui ∈
(RS(N ,�′′)q , 0), and a vector w′′, such that its last coordinate is nonzero. Note that not
all vectors can have the last coordinate equal to 0 because that would mean that we have
the vector (0, 0, . . . , 0, 1) ∈ (D(N ,�)⊥)q , contradicting the bound given for the minimum
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distance. Therefore, all the vectors ui are in (D(N ,�)⊥)q ∩ ((D(N ,�)⊥)q)
⊥, which gives

c ≤ 1. ��
Remark 5.6 InGalindo et al. (2015), there are conditions to haveRS(N ,�′′) ⊂ RS(N ,�′′)⊥.
For example, for the type of set �′′ that we are considering in Theorem 5.5, if, for every
cyclotomic set Ia ⊂ �′′, we have IN−1−a �⊂ �′′, then RS(N ,�′′) ⊂ RS(N ,�′′)⊥.

For the code RS(N ,�′′)⊥ we have the bound wt(RS(N ,�′′)⊥) ≥ at+1 + 1. However,
we have at+1 +1 = at +2 in many cases (this happens if and only if at +1 /∈ �′′, because in
that case at+1 = at +1). In that situation, we have the same bound for the minimum distance
for RS(N ,�′′)⊥ and for the corresponding EAQECC from Theorem 5.5. In the following
discussion we will assume that at+1 + 1 = at + 2.

If we get a QECC with parameters [[n, κ, δ; 0]]q from the affine case using RS(N ,�′′)q ,
then we would get an EAQECC with parameters [[n + 1, κ + 1+ c, δ; c]]q in the projective
case using Theorem 5.5, where c ≤ 1. If we take into account the rate ρ := κ/n and the net
rate ρ := (κ − c)/n, we see that the code obtained with Theorem 5.5 has better rate and net
rate than the one obtained in the affine case. Moreover, it can be checked that the codes we
obtain are not directly obtainable from the affine case using the propagation rules from Luo
et al. (2022), which can be adapted for EAQECCs arising from Theorem 5.1 (for example,
see Anderson et al. 2022).

In the constructions from Theorems 5.15 and 6.6, the same argument shows that, as long
as at+1 + 1 = at + 2, we can obtain codes with better rates than the ones from the affine
case, which cannot be deduced from the propagation rules from Luo et al. (2022).

Example 5.7 We consider N = qs = 34 = 81, with q = 32 (s = 2). The first minimal
cyclotomic sets, ordered by their minimal element, are

I0 = {0}, I1 = {1, 9}, I2 = {2, 18}, I3 = {3, 27}, I4 = {4, 36}, I5 = {5, 45}.
With the notation that we have been using, we consider the minimal elements ai , for i =
0, . . . , 5, and� = ⋃4

i=0 Iai ∪{5} (t = 5with the previous notation).Wehave
∑5

i=0 nai = 11,
and we have at + 2 = 7. It is easy to check that IN−1−ai �⊂ � for i = 0, . . . , 5. By
Remark 5.6 we have RS(N ,�′′) ⊂ RS(N ,�′′)⊥ and we can apply Theorem 5.5 to obtain a
quantum code with parameters [[82, 61, 7; 1]]9. If we had used the affine code RS(N ,�′′)
with�′′ = ⋃5

i=0 Iai , the bound for theminimumdistancewould have been the same, because
at + 1 = 8 /∈ �′′, and we would have obtained the code [[81, 59, 7; 0]]9.

We can also get QECCs (EAQECCs with c = 0) directly under some assumptions, as the
following result shows.

Proposition 5.8 Assume that p > 2. Let N be an odd integer, such that N − 1 | qs − 1
and p | N. We consider a union of cyclotomic sets � ⊂ {0, 1, . . . , N − 1}, such that
d = d(�) = (N − 1)/2. If t is the number of consecutive exponents in �, then we can
construct a QECC with parameters [[n, κ,≥ δ; 0]]q , where n = N + 1, κ = N + 1− 2|�|,
and δ = t + 1.

Proof By Proposition 4.19, Lemma 4.20 and Remark 5.3, we have that PRS(N ,�) is Galois
invariant, and we have wt((PRS(N ,�)q)

⊥) ≥ t + 1. By Corollary 4.11, if we consider
�d = {0, 1, . . . , (N − 1)/2}, we have that

PRS(N ,�) ⊂ PRS(N ,�d) = PRS(N ,�d)
⊥ ⊂ PRS(N ,�)⊥.
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Therefore, considering the intersection with F
n
q we obtain that PRS(N ,�)q ⊂

(PRS(N ,�)q)
⊥. If we consider C1 = C2 = PRS(N ,�)q in the CSS Construction 5.1,

we have already obtained the length, the bound for the minimum distance, and c = 0, for the
parameters of the corresponding quantum error-correcting code. For the dimension, we have
dim PRS(N ,�)q = |�| by Corollary 3.7, taking into account that |Id | = 1 in this case by
Lemma 4.20. ��
Example 5.9 Weconsider qs = 33, q = 3 and N = 33 = 27. Let� = I0∪I1∪I4∪I13 (note
that 13 = (N −1)/2). We are not considering consecutive cyclotomic sets, which means that
the BCH-type bound for the minimum distance might not be accurate. Hence, we have com-
puted it directly with Magma (Bosma et al. 1997). The code (PRS(N ,�)q)

⊥ has parameters
[28, 20, 6], which gives a QECC with parameters [[28, 12, 6; 0]]3 by Proposition 5.8, which
are the best known parameters for a quantum code over F3 with that length and dimension
according to Grassl (2007). With RS(N ,�) and RS(N ,�′) (where �′ = � \ {(N − 1)/2}),
we obtain the parameters [27, 19, 6] and [27, 20, 5] for the dual codes of their subfield sub-
codes, respectively. These codes would give QECCs with parameters [[27, 11, 6; 0]]3 and
[[27, 13, 5; 0]]3, respectively, applying the CSS Construction 5.1.

5.2 Asymmetric EAQECCs

Aswe said in the introduction, phase-shift and qudit-flip errors are not equally likely to occur.
It is, therefore, desirable to obtain EAQECCs with different error correction capabilities for
each of these types of errors. To construct asymmetric EAQECCs, we can use the following
result from Galindo et al. (2020).

Theorem 5.10 Let Ci ⊂ F
n
q be linear codes of dimension ki , for i = 1, 2. Then, there is an

asymmetric EAQECC with parameters [[n, κ, δz/δx ; c]]q , where
c = k1 − dim(C1 ∩ C⊥

2 ), κ = n − (k1 + k2) + c,

δz = wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
and δx = wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))
.

The two minimum distances δz and δx give the error correction capability of the corre-
sponding asymmetric EAQECC, which can correct up to �(δz − 1)/2� phase-shift errors and
�(δx − 1)/2� qudit-flip errors.

In Sects. 3 and 4, we obtained bases for both the primary codes PRS(N ,�)q and their
duals (PRS(N ,�)q)

⊥. This is the key for the proof of the following result, which allows
us to construct asymmetric EAQECCs from subfield subcodes of projective Reed–Solomon
codes. We recall that, for � ⊂ {0, 1, . . . , N − 1}, we denote �I = ⋃

Ia⊂� Ia , and we also
recall that B is the set of maximal representatives of the minimal cyclotomic sets.

Theorem 5.11 Let 1 ≤ d1, d2 ≤ N−1, such that di ∈ B, for i = 1, 2, and p | N.We consider
�di = {0, 1, . . . , di } and we denote �′

di
:= �di \ {di }, for i = 1, 2. If ((�′

d1
)I)⊥ ⊂ (�′

d2
)I,

then we can construct an asymmetric EAQECC with parameters
⎡

⎣

⎡

⎣N + 1,
∑

b∈B,b<d1

nb +
∑

b∈B,b<d2

nb + 2 − N , δz/δx ; 1
⎤

⎦

⎤

⎦

q

,

where δz ≥ N − d1 + 1, δx ≥ N − d2 + 1.
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Proof We are going to consider Ci = (PRS(N ,�di )q)
⊥, for i = 1, 2, and we are going

to use Theorem 5.10. The bounds for δz and δx are clear, and we obtain the dimension
using Corollary 3.7 if we assume c = 1. For the parameter c = dim(PRS(N ,�d1)q)

⊥ −
dim((PRS(N ,�d1)q)

⊥ ∩ PRS(N ,�d2)q), we are going to study dim((PRS(N ,�d1)q)
⊥ ∩

PRS(N ,�d2)q). For (PRS(N ,�d1)q)
⊥ we have the basis given by the evaluation of the

following set from Theorem 4.14:
⋃

a∈A|Ia∩�⊥
d1

�=∅
{Ta(ξ ra x0xa1 ) | 0 ≤ r ≤ na − 1}∪

{TN−1−d1(ξ
r
N−1−d1x

N−1−d1
1 ) | 0 ≤ r ≤ nd1 − 1}. (6)

From Theorem 3.4 it is easy to obtain that the evaluation of the following set gives a basis
for PRS(N ,�d2)q :

⋃

a∈A|Ia⊂�′
d2

{Ta(ξ ra x0xa1 ) | 0 ≤ r ≤ na − 1} ∪ {T h
d2(x

d2
1 )}. (7)

It is also clear that the a ∈ A, such that Ia ∩ �⊥
d1

�= ∅ are precisely the a ∈ A, such that

Ia ⊂ ((�d1)I)⊥. We also have that ((�′
d1

)I)⊥ = ((�d1)I)⊥ ∪ IN−1−d1 . Therefore, taking

into account the assumption ((�′
d1

)I)⊥ ⊂ (�′
d2

)I ⊂ �′
d2
, we have that all the traces of

monomials of the type x0xa1 , with a ∈ A, in the set from (6), are contained in the set from
(7). This implies that the evaluation of the set

⋃

a∈A|Ia∩�⊥
d1

�=∅
{Ta(ξ ra x0xa1 ) | 0 ≤ r ≤ na − 1} (8)

is in (PRS(N ,�d1)q)
⊥ ∩ PRS(N ,�d2)q .

Now we are going to study which polynomials from the set generated by

{TN−1−d1(ξ
r
N−1−d1x

N−1−d1
1 ) | 0 ≤ r ≤ nd1 − 1}

have their evaluation in (PRS(N ,�d1)q)
⊥ ∩ PRS(N ,�d2)q . As in Theorem 4.14, we

assume that ξN−1−d1 is a primitive element of Fq
nd1 (note that nd1 = nN−1−d1 ), such that

TN−1−d1(ξN−1−d1) �= 0. For ease of notation, we are going to denote now d ′
1 = N − 1− d1.

For 0 ≤ r ≤ nd1 − 1, r �= 1, we have

Td ′
1
(ξd ′

1
)Td ′

1
(ξ rd ′

1
x0x

d ′
1

1 ) − Td ′
1
(ξ rd ′

1
)Td ′

1
(ξd ′

1
x0x

d ′
1

1 )

≡ Td ′
1
(ξd ′

1
)Td ′

1
(ξ rd ′

1
x
d ′
1

1 ) − Td ′
1
(ξ rd ′

1
)Td ′

1
(ξd ′

1
x
d ′
1

1 ) mod I (XN ).

(9)

This is easy to see, because when we set x0 = 1, we obtain the same polynomials at each
side, which means that they have the same evaluation in [{1} × YN ], and both polynomials
evaluate to 0 in [0 : 1]. Therefore, they have the same evaluation in XN . Because of the
assumption ((�′

d1
)I)⊥ = ((�d1)I)⊥ ∪ Id ′

1
⊂ (�′

d2
)I, we obtain Id ′

1
⊂ �′

d2
and it is clear

that we have the evaluation of the polynomial in the left-hand side of (9) in PRS(N ,�d2)q
if we consider the basis from (7). The evaluation of the polynomial in the right-hand side is
clearly in (PRS(N ,�d1)q)

⊥ (see (6)). Thus, we have proved that the image by the evaluation
map of the polynomials in the set

{Td ′
1
(ξd ′

1
)Td ′

1
(ξ rd ′

1
x0x

d ′
1

1 ) − Td ′
1
(ξ rd ′

1
)Td ′

1
(ξd ′

1
x0x

d ′
1

1 ) | 0 ≤ r ≤ nd1 − 1, r �= 1} (10)
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is in (PRS(N ,�d1)q)
⊥ ∩ PRS(N ,�d2)q .

Hence, the evaluation of the union of the sets from (8) and (10) is in (PRS(N ,�d1)q)
⊥ ∩

PRS(N ,�d2)q , and it is easy to see that the evaluation of this union is linearly inde-
pendent. Taking into account the basis from (6), we obtain that dim((PRS(N ,�d1)q)

⊥ ∩
PRS(N ,�d2)q) ≥ dim((PRS(N ,�d1)q)

⊥) − 1, i.e., c ≤ 1.
On the other hand, having c = 0 means that (PRS(N ,�d1)q)

⊥ ⊂ PRS(N ,�d2)q . This
implies that the evaluation of all the traces appearing in (9) are in PRS(N ,�d2)q . However,

the evaluations of Td ′
1
(ξd ′

1
x0x

d ′
1

1 ) and Td ′
1
(ξd ′

1
x
d ′
1

1 ) differ only at the coordinate associated to
the point [0 : 1]. This would imply that the minimum distance of PRS(N ,�d2)q is 1, a
contradiction. Therefore, c = 1. ��
Remark 5.12 We note that in the previous result we have that (�′

d)I = ⋃
b∈B|b<d Ib.

As we said in the introduction, it is desirable to obtain asymmetric quantum codes with
higher error-correction capability for phase-shift errors, i.e. with δz > δx . For the codes
obtained using Theorem 5.11, this corresponds to choosing d1 < d2.

In the next example we show that we are able to obtain codes which are better than the
ones available in the current literature.

Example 5.13 We consider the extension F16 ⊃ F4, which is the setting from Exam-
ple 4.22. We choose d1 = 14, d2 = 15, and apply Theorem 5.11, which gives the
parameters [[17, 14, 3/2; 1]]4. In Galindo et al. (2020), we can find a code with parame-
ters [[15, 12, 3/2; 1]]4 using BCH codes. We see that the code we have obtained has better
rate κ/n, and also better net rate (κ − c)/n.

If we consider the extension F25 ⊃ F5 instead, and choose d1 = 22, d2 = 23, we obtain
a code with parameters [[26, 19, 4/3; 1]]5 using Theorem 5.11. It is possible to adapt the
propagation rules fromLuoet al. (2022) to asymmetricEAQECCsarising fromTheorem5.10.
For example, we can reduce the length by using extra entanglement, provided that c ≤
n − κ − 2:

[[n, κ, δz/δx ; c]]q → [[n − 1, κ, δz/δx ; c + 1]]q . (11)

In Galindo et al. (2020) a code with parameters [[24, 19, 4/3; 3]]5 is presented, which can be
obtained from our codewith parameters [[26, 19, 4/3; 1]]5 by applying (11) two times. In this
sense, we can say that the parameters [[24, 19, 4/3; 3]]5 appearing in Galindo et al. (2020)
are a consequence of the parameters [[26, 19, 4/3; 1]]5 that we obtain with Theorem 5.11.

Finally, if we consider the extension F64 ⊃ F8, for d1 = 60 and d2 = 63, we obtain
the parameters [[65, 58, 5/2; 1]]8, which give a better rate and net rate than the code with
parameters [[63, 56, 5/2; 1]]8 from Galindo et al. (2020). If we choose d1 = 58 and d2 = 62
instead, we obtain the parameters [[65, 52, 7/3; 1]]8, which, after using the propagation rule
(11) as before, give the parameters [[63, 52, 7/3; 3]]8 that appear in Galindo et al. (2020).

If we do not assume ((�′
d1

)I)⊥ ⊂ (�′
d2

)I in Theorem 5.11, then we would obtain instead
the parameters [[N + 1,

∑
b∈B,b<d1 nb + ∑

b∈B,b<d2 nb + 1 + c − N , δz/δx ; c]]q , for c =
dim(PRS(N ,�d1)q)

⊥ − dim((PRS(N ,�d1)q)
⊥ ∩ PRS(N ,�d2)q).

5.3 Hermitian EAQECCs

In the Hermitian case, we have to work with three different fields. Hence, we are going to
change the notation from the previous sections. We consider the field extension Fq2� ⊃ Fq2 ,
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where q2� = p2r , q = ps , for some r , s > 0, and r = �s. Thus, in what follows we are going
to obtain codes of length n = N + 1, where N > 1 is an integer, such that N − 1 | q2� − 1.

As before, we are going to consider the set ZN = {0} ∪ {1, 2, . . . , N − 1}, where
{1, 2, . . . , N−1} is regarded as the set of representatives of the ringZ/(N−1)Z.We consider
the cyclotomic sets with respect to q2 over {0, 1, . . . , N − 1}. We call A the set of mini-
mal elements of the different cyclotomic sets. We introduce now the Hermitian construction
(Galindo et al. 2019b, Thm. 3) that we are going to use.

Theorem 5.14 (Hermitian construction) Let C ⊂ F
n
q2

be a linear code of dimension k and

C⊥h its Hermitian dual. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q , where
c = k − dim(C ∩ C⊥h ), κ = n − 2k + c, and δ = wt(C⊥h \ (C ∩ C⊥h )).

We are only going to consider the Hermitian product over Fq2 . Therefore, for a, b ∈ F
n
q2

we have

a ·h b :=
n∑

i=0

aib
q
i .

In what follows, when considering a power of a code or a vector, we will be considering
the component-wise power, i.e., Cq := {cq := (cq1 , . . . , c

q
n ) | c = (c1, . . . , cn) ∈ C}. It is

easy to check that, for codes over Fq2 , we have that C
⊥ = (C⊥h )q , where C⊥h denotes the

Hermitian dual.

Theorem 5.15 Let A = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal represen-
tatives of the cyclotomic sets Iai , 0 ≤ i ≤ z, of {0, 1, . . . , N − 1} with respect to q2. Let
� = ⋃t−1

i=0 Iai ∪ {at }, such that RS(N ,�′′)q2 ⊂ (RS(N ,�′′)q2)⊥h , where �′′ = ⋃t
i=0 Iai .

Then, we can construct an EAQECC with parameters [[n, κ,≥ δ; c]]q , where n = N + 1,
κ = N + 1 − 2

(∑t
i=0 nai

)+ c, δ = at + 2 and c ≤ 1.

Proof We are going to consider the code C = ((D(N ,�)⊥)q2)
⊥h for the Hermitian con-

struction 5.14. Using what we obtained in Theorem 5.5, the only thing left to prove is the
statement about the parameter c.

Following the proof of Theorem 5.5, we have (D(N ,�)⊥)q2 = ((RS(N ,�′′)⊥)q2 , 0) +
〈w′〉 for some vector w′ with nonzero last coordinate. Therefore, we see that
dim ((D(N ,�)⊥)q2)

⊥h = dim RS(N ,�′′)q2 = dim((RS(N ,�′′)⊥)q2)
⊥h . Moreover, we

have

((RS(N ,�′′)⊥)q2)
⊥h = ((RS(N ,�′′)q2)⊥)⊥h = (((RS(N ,�′′)q2)⊥)⊥)q

= (
RS(N ,�′′)q2

)q
.

Thus, we obtain

((D(N ,�)⊥)q2)
⊥h = (((PRS(N ,�′′)q2)q , 0) + 〈(0, 0, . . . , 0, 1)〉) ∩ 〈(w′)〉⊥h .

Note that (0, 0, . . . , 0, 1) /∈ 〈(w′)〉⊥h , because w′ has a nonzero last coordinate. We can
consider a basis for ((D(N ,�)⊥)q2)

⊥h formed by (dim RS(N ,�′′)q2 − 1) vectors ui ∈
((RS(N ,�′′)q2)q , 0), and a vector w, such that its last coordinate is nonzero (not all vectors
can have the last coordinate equal to 0 because that would mean that we have the vector
(0, 0, . . . , 0, 1) ∈ (D(N ,�)⊥)q2 , contradicting the bound given for the minimum distance).
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By our hypothesis, we have RS(N ,�′′)q2 ⊂ (RS(N ,�′′)q2)⊥h . This implies that
(
RS(N ,�′′)q2

)q ⊂ (
(RS(N ,�′′)q2)⊥h

)q = (RS(N ,�′′)q2)⊥ = (RS(N ,�′′)⊥)q2 . Tak-
ing into account that (D(N ,�)⊥)q2 ⊃ ((RS(N ,�′′)⊥)q2 , 0) ⊃ ((RS(N ,�′′)q2)q , 0), we
see that the vectors ui are in (D(N ,�)⊥)q2 as well, and we obtain the desired inequality for
the dimension of the intersection. ��
Remark 5.16 From Galindo et al. (2015, Prop. 3) we can obtain conditions to have
RS(N ,�′′)q2 ⊂ (RS(N ,�′′)q2)⊥h , like the one we show next. Let �′′ = ⋃t

i=0 Iai ,
and we denote by a′

i the minimal element in A, such that Ia′
i

= I−qai . Assuming

d(�) < N − 1, if �′′ ⊂ (�′′)⊥h := {0, 1, . . . , N − 1}\⋃t
i=0 Ia′

i
, then we have

RS(N ,�′′)q2 ⊂ (RS(N ,�′′)q2)⊥h .

Example 5.17 We continue with the setting from Example 5.7. It is easy to check that the set
� in Example 5.7 satisfies � ⊂ �⊥h , and by Remark 5.16 and Theorem 5.15 we obtain a
quantum code with parameters [[82, 67, 7; 1]]3.

With the construction from Theorem 5.15 we can obtain several quantum codes over F2

whose parameters do not appear in the table of EAQECCs from Grassl (2007), and therefore,
we improve the table. With the extension F24 ⊃ F22 , we can obtain a code with parameters
[[17, 12, 3; 1]]2, which is not in the table from Grassl (2007). We can consider now the
following propagation rule from Luo et al. (2022): let C be an EAQECC with parameters
[[n, κ, δ; c]]q obtained from Theorem 5.14 (for example, the codes from Theorem 5.15). If
c ≤ n − κ − 2, then we can reduce the length using extra entanglement:

[[n, κ, δ; c]]q → [[n − 1, κ, δ; c + 1]]q . (12)

Iterating this rule, it is easy to check that, from an EAQECC with parameters [[n, κ, δ; c]]q ,
one can obtain EAQECCs with parameters [[n − s, κ, δ; c+ s]]q , s = 1, . . . , (n − κ − c)/2.
Note that the maximum value for c is k = dimC , where C is the classical code used for
Theorem 5.14, and for the maximum value of s that we have stated we have precisely that
c + s = k:

c + s = c + n − κ − c

2
= c + 2k − 2c

2
= k.

Applying the propagation rule (12) to the parameters [[17, 12, 3; 1]]2, we obtain
[[16, 12, 3; 2]]2 and [[15, 12, 3; 3]]2, which are also missing in the table (Grassl 2007).

For the extension F26 ⊃ F22 , we obtain codes with length 65, which is greater than
the current maximum length in Grassl (2007) for EAQECCs over F2. Nevertheless, we can
reduce the length with the propagation rule (12) and check if the corresponding parameters
are in the table. A code with parameters [[64, 58, 3; 2]]2, whose parameters are missing
in Grassl (2007), is obtained from the code with parameters [[65, 58, 3; 1]]2 derived from
Theorem 5.15 using (12). Moreover, by applying the propagation rule (12) to the code with
parameters [[65, 40, 7; 1]]2 deduced from Theorem 5.15, we obtain codes with parameters
[[65 − i, 40, 7; 1 + i]]2, for i = 1, 2, . . . , 12, whose parameters are also missing in Grassl
(2007).

In total, we obtain in this way 16 EAQECCs over F2 whose parameters are missing in
Grassl (2007).

The table of EAQECCs from Grassl (2007) also covers codes over F3. However, the
smaller length that we can achieve with Theorem 5.15 over F3 would be 34 + 1 = 82, much
higher than the current maximum length in the table from Grassl (2007) for this case. For
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example, we obtain codes with parameters [[82, 77, 3; 1]]3, [[82, 73, 4; 1]]3, [[82, 69, 5; 1]]3
and [[82, 65, 6; 1]]3.

6 Evaluating at the trace roots

In this section, following the ideas from Galindo et al. (2019c), we are going to consider
evaluation codes over the roots of a suitable trace polynomial. In Galindo et al. (2019c), the
authors considered the trace polynomial over Fq2� with respect to Fq defined as

Tr�(x) = x + xq + xq
2 + · · · + xq

2�−1
.

Let YTr� = {α ∈ Fq2� | Tr�(α) = 0}. It is well known that |YTr� | = q2�−1. In Galindo
et al. (2019c), evaluation codes over the roots of the trace are defined, obtaining codes with
length q2�−1, and bounds for the dimension and minimum distance of these codes are found.
In this section, we are going to do a similar thing over the projective space, obtaining codes
of length q2�−1 + 1.

First, we need to define the finite set of projective points in which we are going to evaluate.
To do this, we are simply going to add the point at infinity to the set of roots of the trace, i.e.,
we are going to consider the following set of points:

XTr� = {[1 : α] | Tr�(α) = 0} ∪ {[0 : 1]}.
It is clear from the definition that |XTr� | = q2�−1 + 1. Moreover, we can give this set

as the zeroes of a square-free homogeneous polynomial. In the rest of this section, when
we consider the homogenization f h of a polynomial f , we are considering the standard
homogenization (up to degree deg( f )).

Proposition 6.1 The vanishing ideal of XTr� is I (XTr� ) = 〈x0(Tr�(x1))h〉.
Proof The generator of the ideal is a homogeneous polynomial. Therefore, we can just look
at the set of representatives P1 to check the zeroes of the ideal. It is clear that [0 : 1] ∈
V (〈x0(Tr�(x1))h〉). And it is also clear that if [1 : α] is a zero of x0(Tr�(x1))h , then α must
be a root of Tr�(x). Thus, we have that V (〈x0(Tr�(x1))h〉) = XTr� .

On the other hand, we have the decomposition

Tr�(x) =
∏

α∈Fq2� |Tr�(α)=0

(x − α).

Homogenizing and multiplying by x0 we get

x0(Tr�(x1))
h = x0

∏

α∈Fq2� |Tr�(α)=0

(x1 − αx0).

Therefore, x0(Tr�(x1))h is a square-free polynomial and 〈x0(Tr�(x1))h〉 is a radical ideal by
Cox et al. (2015, Prop. 9, Chapter 4, Section 2), which means that it is equal to I (XTr� ). ��

If we consider the set of standard representatives XTr� of XTr� , we obtain the following
vanishing ideal.

Proposition 6.2 The vanishing ideal of XTr� is

I (XTr� ) = 〈x20 − x0, x
q2�

1 − x1, (x0 − 1)(x1 − 1), x0 Tr(x1)〉.
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Proof It is clear that any point of XTr� satisfies the equations. On the other hand, any point
that satisfies this equations must have the first coordinate equal to 0 or 1 because of the first
equation. If it is 0, then by the equation (x0 − 1)(x1 − 1) ≡ 0 mod I (XTr� ) we have that
the last coordinate is equal to 1. If the first coordinate is 1, then the last equation implies
that the last coordinate must be a zero of Tr(x). Therefore, V (I (XTr� )) = XTr� . We obtain
the result applying Seidenberg’s Lemma (Kreuzer and Robbiano 2000, Prop. 3.7.15) and
Hilbert’s Nullstellensatz over the algebraic closure of Fq2� . ��

We are going to define the evaluation map that we are going to use to construct these new
codes (we have n = q2�−1 + 1):

evTr� : Fq2� [x0, x1]/I (XTr� ) → F
n
q2� , f 	→ ( f (P1), . . . , f (Pn))Pi∈XTr�

.

Definition 6.3 Let A = {a0 = 0 < a1 < · · · < az}. We are going to consider a set
� = ⋃t−1

i=0 Iai ∪ {at } as before. For such a set �, we consider the code D(Tr�,�) defined
as the linear code generated by {evTr� (x0xα

1 ) | α ∈ �\{at }} ∪ {evTr� (xat1 )}.
In what follows we are going to need to use the codes RS(Tr�,�) := RS(YTr� ,�) that

appear in Galindo et al. (2019c), which are the puncturing of the codes D(Tr�,�) at the
coordinate associated to the point [0 : 1]. When � is a union of consecutive cyclotomic sets,
we have that (RS(Tr�,�)q2)

⊥ = (RS(Tr�,�)⊥)q2 . We are going to be interested in the code
(D(Tr�,�)⊥)q2 , for which we have the following result.

Theorem 6.4 Let a0 = 0 < a1 < a2 < · · · < at−1 < at < q2� − 1 be a sequence of
consecutive elements of A. Let � = ⋃t−1

i=0 Iai ∪ {at } and let �′′ = � ∪ Iat . Assuming that
(D(Tr�,�)⊥)q2 is not degenerate, we have the following inequalities:

dim (D(Tr�,�)⊥)q2 = dim(RS(Tr�,�
′′)⊥)q2 + 1 ≥ n −

t∑

i=0

nai ,

wt((D(Tr�,�)⊥)q2) ≥ at + 2.

Proof By the definitions, it is clear thatD(Tr�,�) = (RS(Tr�,�′), 0)+〈evTr� (xat1 )〉, where
�′ = � \ {at }. This means that dimD(Tr�,�) = dim RS(Tr�,�′) + 1 = dim RS(Tr�,�),
because if we have dim RS(Tr�,�′) = dim RS(Tr�,�), this means that evTr� (x0x

at
1 ) is in

(RS(Tr�,�′), 0), which implies that evTr� (x0x
at
1 − xat1 ) is in D(Tr�,�), but this is a vector

of weight 1, which is a contradiction, because (D(Tr�,�)⊥)q2 (and D(Tr�,�)⊥) is not
degenerate. Therefore, we have that dimD(Tr�,�)⊥ = dim RS(Tr�,�)⊥ + 1.

Arguing as in the proof of Theorem 5.5, we haveD(Tr�,�)⊥ = (RS(Tr�,�)⊥, 0)+〈w〉,
where w is a vector with a nonzero last entry, and we also obtain (D(Tr�,�)⊥)q2 =
((RS(Tr�,�)⊥)q2 , 0) + 〈w′〉 for some vector w′ with nonzero last coordinate. Moreover,
a basis for ((RS(Tr�,�)⊥)q2 , 0) would give us dim(RS(Tr�,�)⊥)q2 linearly indepen-
dent vectors with last coordinate equal to 0, which means that dim (D(Tr�,�)⊥)q2 =
dim(RS(Tr�,�)⊥)q2 + 1.

Weobtain dim (D(Tr�,�)⊥)q2 = dim(RS(Tr�,�′′)⊥)q2+1, because (RS(Tr�,�)⊥)q2 =
(RS(Tr�,�′′)⊥)q2 , which is what we are going to see next. When evaluating in all the
points of Fq2� , we have (RS(q2�,�)⊥)q2 = (RS(q2�,�′′)⊥)q2 . The code RS(Tr�,�) (resp.
RS(Tr�,�′′)) corresponds to a puncturing of RS(q2�,�) (resp. RS(q2�,�′′)), because we
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only evaluate in the zeroes of Tr�(x). The dual of a punctured code is equal to the shortening
of the dual code at the same positions (Pellikaan et al. 2018, Prop. 2.1.17). Given a code
C , if we denote by S the positions where we are puncturing (resp. shortening), by CS the
punctured code and by CS the shortened code, we obtain

((CS)
⊥)q2 = ((C⊥)S)q2 = ((C⊥)q2)

S,

because shortening a code commutes with considering its subfield subcode. Let S be the
positions where we puncture to obtain RS(Tr�,�) from RS(q2�,�). Using the previous
expression and the fact that (RS(q2�,�)⊥)q2 = (RS(q2�,�′′)⊥)q2 we get

(RS(Tr�,�)⊥)q2 = ((RS(q2�,�)S)
⊥)q2 = ((RS(q2�,�)⊥)q2)

S = ((RS(q2�,�′′)⊥)q2)
S

= ((RS(q2�,�′′)S)⊥)q2 = (RS(Tr�,�
′′)⊥)q2 .

The bound for the dimension given in the statement is obtained by using Galindo et
al. (2019c, Thm. 13).

On the other hand, for the minimum distance, we have the BCH-type bound for
D(Tr�,�)⊥, which gives wt(D(Tr�,�)⊥) ≥ at + 2, and it is inherited by (D(Tr�,�)⊥)q2 .
��

The previous result shows that, if at+1 + 1 = at + 2, then the code (D(Tr�,�)⊥)q2 has 1
more length and dimension than the code (RS(Tr�,�′′)⊥)q2 . In the next example we obtain
some codes (D(Tr�,�)⊥)q2 with record parameters according to Grassl (2007).

Example 6.5 We consider the field extension F28 ⊃ F22 , i.e., we have q = 2 and � = 4.
Therefore, we will get codes with length N = 129. Let � = I0 ∪ I1 ∪ · · · Iat−1 ∪ {at }.
Hence, we have wt

(
(D(Tr�,�)⊥)q2

) ≥ at + 2. The dimension of these codes can be easily
computed using Magma (Bosma et al. 1997). In this case, we obtain a lot of codes whose
parameters achieve the best knownvalues inGrassl (2007), and inmanycasesweare obtaining
codes with higher length and dimension, but same minimum distance as in the affine case.
Moreover, we obtain the parameters [129, 90, 15]4, [129, 86, 16]4 and [129, 41, 44]4, for
at equal to 13, 14 and 42, respectively. In Grassl (2007), a construction of a code with
parameters [129, 86, 16]4 is currently missing, and we are able to obtain one. The codes with
parameters [129, 90, 15]4 and [129, 41, 44]4 exceed the best known values in Grassl (2007).
Furthermore, by shortening and puncturing these codes we are able to obtain more codes
with record parameters or missing constructions in Grassl (2007). For instance, from the
code with parameters [129, 41, 44]4, we obtain the parameters [129− i − j, 41− i, 44− j]4,
for 0 ≤ i ≤ 4, 0 ≤ j ≤ 3, which are either records or the construction of a code with those
parameters is missing in Grassl (2007).

The next result shows that we can construct quantum codes over Fq using Theorem 6.4
together with the Hermitian construction 5.14.

Theorem 6.6 LetA = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal representatives
of the cyclotomic sets Iai , 0 ≤ i ≤ z, of {0, 1, . . . , q2� − 1} with respect to q2. Let t ≤ z be
an index, such that

at ≤ q� −
⌊

(q − 1)

2

⌋

q�−1 − · · · −
⌊

(q − 1)

2

⌋

q − 1.

Then, for � = ⋃t−1
i=0 Iai ∪ {at } as before, assuming that (D(Tr�,�)⊥)q2 is not degenerate,

we have that:

dim
(
((D(Tr�,�)⊥)q2)

⊥h ∩ (D(Tr�,�)⊥)q2

)
≥ dim ((D(Tr�,�)⊥)q2)

⊥h − 1.
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As a consequence, we can construct an EAQECC with parameters

[[

n,≥ n − 2
t∑

i=0

nai + c,≥ at + 2; c
]]

q

,

where n = q2�−1 + 1 and c ≤ 1.

Proof Similarly to the proof of Theorem 5.15, we are going to consider the code C =
((D(Tr�,�)⊥)q2)

⊥h for the Hermitian construction 5.14. By Theorem 6.4 we obtain the
bound for the minimum distance, and we also obtain that dim ((D(Tr�,�)⊥)q2)

⊥h ≤
∑t

i=0 nai , which explains the dimension of the quantum code. The only thing left to prove
is the claim about the intersection of (D(Tr�,�)⊥)q2 with its hermitian dual.

Under our assumptions, in Galindo et al. (2019c, Thm. 15) it is proved that we have
RS(Tr�,�′′)q2 ⊂ (RS(Tr�,�′′)q2)⊥h for �′′ = ⋃t

i=0 Iai . The reasoning from the proof of
Theorem 5.15 finishes the proof. ��

Example 6.7 We continue with Example 6.5. For at = 10, we have at + 2 = 12, and,
computing the dimension with Magma (Bosma et al. 1997), we obtain a quantum code with
parameters [[129, 67, 12; 1]]2 using Theorem 6.6. In the affine case from Galindo et al.
(2019c), the parameters [[128, 65, 12; 0]]2 are obtained. Therefore, we have increased the
length by 1 and the dimension by 2, at the expense of increasing the parameter c by 1.
Moreover, the codes [[129, 73, 11; 1]]2, [[129, 67, 12; 1]]2 and [[129, 59, 13; 1]]2 that we
can obtain in this way (by changing at ) cannot be deduced using the propagation rules from
Luo et al. (2022) with the codes in the table of QECCs from Grassl (2007).

In Galindo et al. (2019c), the authors consider what they call complementary codes, which
are obtained in an analogous way, but evaluating in precisely all the points in Fq2� besides the
zeroes of Tr�(x). For the projective case, it is easy to see that including the point at infinity
in this set corresponds to considering the zero set of

x0x
q2�

1 − xq
2�

0 x1
Tr�(x1)h

.

All the results we have given in this section apply to these types of codes as well, but with
length q2� − q2�−1 + 1 (instead of q2�−1 + 1).
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