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Abstract— Given two q-ary codes C1 and C2, the relative
hull of C1 with respect to C2 is the intersection C1 ∩ C⊥

2 .
We prove that when q > 2, the relative hull dimension
can be repeatedly reduced by one, down to a certain bound,
by replacing either of the two codes with an equivalent one.
The reduction of the relative hull dimension applies to hulls
taken with respect to the e-Galois inner product, which has as
special cases both the Euclidean and Hermitian inner products.
We give conditions under which the relative hull dimension
can be increased by one via equivalent codes when q > 2.
We study some consequences of the relative hull properties
on entanglement-assisted quantum error-correcting codes and
prove the existence of new entanglement-assisted quantum error-
correcting maximum distance separable codes, meaning those
whose parameters satisfy the quantum Singleton bound.

Index Terms— Hull, entanglement-assisted quantum error-
correcting codes, CSS construction, quantum codes.
MSC2010: 94B05; 81P70; 11T71; 14G50.

I. INTRODUCTION

LET C be a linear code over a finite field Fq . The hull
of C is defined by Hull(C) = C ∩ C⊥, where C⊥

is the dual of C taken with respect to the Euclidean inner
product. Carlet, Mesnager, Tang, Qi, and Pellikaan proved
in the seminal paper [8] the existence of LCD codes (codes
where the hull is 0) for the case of the Euclidean and the
Hermitian inner product when q > 3. Luo et al. proved
in [27] that when q > 2, the dimension of the Hermitian
hull Hullh(C) = C ∩C⊥h , where C⊥h is the Hermitian dual
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of C, can be reduced to zero one by one in the sense that if
dim Hullh(C) > 0, then there exists a code C ′ monomially
equivalent to C such that dim Hullh(C ′) = dim Hullh(C)−1.
A slight modification reveals the same result for the hull
of C (taken with respect to the Euclidean inner product) when
q > 3. Therefore, there exists a sequence of monomially equiv-
alent codes C0, C1, . . . , Ct = C such that dim Hull(Ci) = i,
where t = dimHull(C). How equivalent codes can change
the hull is also studied in [9].

It is well known that self-orthogonal codes with respect
to the Hermitian inner product may be used to construct
quantum error-correcting codes [1], [5], [22]. Entanglement
allows one to remove restrictions on the relationship between
a code and its dual. Hence, any linear code (not necessarily
self-orthogonal) may be used to define a quantum code [4].
One may also use two codes C1, C2 ⊆ Fn

q satisfying C⊥2 ⊆
C1 via the now famous CSS construction [6], [37]. In the case
of the construction of entanglement-assisted quantum error-
correcting codes using linear codes C1, C2 ⊆ Fn

q , the required
number of pairs of maximally entangled qudits is given by
the parameter c = dim(C1)− dim(C1 ∩C⊥2 ) [39]. Therefore,
a key ingredient for computing c is C1 ∩ C⊥2 , which we call
the relative hull. More explicitly, the relative hull of C1 with
respect to C2 is

HullC2(C1) = C1 ∩ C⊥2 .

Note that the hull of C is Hull(C) = HullC(C).
In this paper, we study how equivalent codes change the

relative hull. Specifically, we look for codes C ′1 and C ′2 equiv-
alent to C1 and C2, respectively, such that the dimension
of HullC′

2
(C ′1) is larger or smaller than that of HullC2(C1).

We first show that to increase or decrease the relative hull
dimension, we only need to find an equivalent code for one of
the codes. Then, we show that the relative hull with respect to
Galois inner products [12], [23] (which include the Euclidean
and Hermitian inner products as particular cases) can be
computed in terms of the Euclidean inner product, justifying
the focus on the classical Euclidean inner product in this work.
One of the main results of this paper is Theorem 3.3, where
we show that we can successively decrease the dimension of
the relative hull by one via equivalent codes when q > 2.
We provide a similar result for e-Galois hulls. As a corollary,
we can recover the analogous result in [8] for the Euclidean
inner product and in [27] for the Hermitian inner product as
special cases.

This paper also concerns increasing the relative hull dimen-
sion. Proposition 4.5 gives an upper bound for the dimension
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of HullC2(C1), which sometimes also is an upper bound
for dim HullC′

2
(C ′1) for any codes C ′1 and C ′2 equivalent to

C1 and C2. Theorem 4.6 shows we can successively increase
the dimension of HullC2(C1) by one via equivalent codes up
to the upper bound given in Proposition 4.5 when q > 2.

Another primary goal is to apply our results to quan-
tum error-correcting codes. We use the standard nota-
tion [[n, κ, δ; c]]q to mean that a quantum code Q is a
q-ary entanglement-assisted quantum error-correcting code
(EAQECC) that encodes κ logical qudits into n physical
qudits with the help of n − κ − c ancillas and c pairs of
maximally entangled qudits. The rate ρ and net rate ρ of Q
are respectively defined by

ρ :=
κ

n
, ρ :=

κ− c

n
.

As stated, the relative hull dimension is linked to the required
number of pairs of maximally entangled quantum states for
an EAQECC. Our results concerning the relative hull demon-
strate how monomially equivalent codes may be used to tailor
the parameter c within the specified bounds. Thus, we can
reduce the required number of pairs of maximally entangled
quantum states while maintaining the net rate. Hence, one has
a simpler implementation with the same net rate. We show
that if a quantum code obtained via the CSS construction using
C1 and C2 is pure, then the minimum distance of the quantum
code obtained via the CSS construction of some linear codes
monomially equivalent to C1 and C2 does not decrease. Fur-
thermore, we give conditions to obtain a pure quantum code
using monomially equivalent codes. We obtain EAQECCs
codes with excellent parameters by applying Theorem 3.3 to
multivariate Goppa codes, filling in some gaps or improving
the parameters of some of the best-known EAQECCs recently
published by Sok [36]. We obtain new EAQMDS (EAQECCs
whose parameters achieve the Singleton bound, so-called
entanglement-assisted quantum maximum distance separa-
ble codes), by applying Theorem 3.3 to (possibly extended
or double extended) generalized Reed-Solomon codes when
q > 2, 1 < n < q + 1, and k ≤ n + 2.

This paper is organized as follows. Preliminaries are given
in Section II. Section III provides results on reducing the rela-
tive hull while Section IV discusses increasing the relative hull.
Applications to the design of entanglement-assisted quantum
error-correcting codes are in Section V. The paper ends with
a conclusion in Section VI.

II. PRELIMINARIES

This section provides a foundation for the rest of the paper
in terms of preliminary results and notation. Subsection II-A
explores the relative hull with respect to the usual (Euclidean)
inner product. Subsection II-B introduces the e-Galois relative
hull, the relative hull with respect to the more recently
introduced Galois inner products, among which we find the
Hermitian inner product. Subsection II-B also proves that
the e-Galois relative hulls are particular cases of the relative
hulls with respect to the usual inner product. Subsection II-C
reviews the primary constructions of quantum error-correcting
codes used in this paper and links them to relative hulls.

A. Relative Hulls and Code Equivalence

Let Fq be the finite field with q elements. The multiplicative
group Fq \ {0} is denoted by F∗q . For c ∈ Fn

q , we denote
by wt(c) the (Hamming) weight of c, which is the number
of nonzero entries of c. For S ⊆ Fn

q , we denote by wt(S)
the minimum of the weights of the elements of S \ {0}.
A linear code C over Fq of length n is a vector subspace
of Fn

q ; we may say code for short because we only deal
with linear codes. An [n, k, d]q-code is a linear code over Fq

of length n, dimension k as an Fq-subspace, and minimum
distance d(C) = wt(C); we sometimes refer to such a code
as an [n, k]q-code if the minimum distance is irrelevant to the
discussion. The Euclidean dual of C is denoted and defined
by

C⊥ =
{
x ∈ Fn

q | x · c = 0 for all c ∈ C
}

,

where x·c =
∑n

i=1 xici is the Euclidean inner product. Recall
that Hull(C) = C ∩ C⊥. We say that C is self-orthogonal if
Hull(C) = C and that C is linear complementary dual (LCD)
if Hull(C) = {0}. The set of m× n matrices with entries in
Fq is denoted by Fm×n

q , and rk(M) denotes the rank of a
matrix M ∈ Fm×n

q . The kernel of G ∈ Fk×n
q is ker(G) ={

x ∈ Fn
q | GxT = 0

}
. The j-th standard basis vector of Fn

q is
ej = (0, . . . , 0, 1, 0, . . . 0) where the only nonzero entry is in
the j-th coordinate.

Definition 2.1: Let C1 and C2 be two codes of the same
length over Fq . We define the relative hull of C1 with respect
to C2 as

HullC2(C1) = C1 ∩ C⊥2 .

The hull of C1 is Hull(C1) = HullC1(C1).
Let x be an element of HullC1(C2) = C⊥1 ∩ C2 and c an

element of HullC2(C1) = C1∩C⊥2 . As x ·c = 0, we conclude
that HullC1(C2) ⊆ (HullC2(C1))

⊥ (note that (A ∩ B)⊥ =
A⊥ + B⊥). In particular, Hull(C) is a self-orthogonal code
for any linear code C. Note that Hull(C1) ⊆ HullC2(C1) if
C2 ⊆ C1 and HullC2(C1) ⊆ Hull(C1) if C1 ⊆ C2.

The following result presents some basic properties of the
relative hull.

Proposition 2.2: Let Ci be an [n, ki]q-code with generator
matrix Gi for i = 1, 2. The following hold:

(i) HullC2(C1) =
{
xG1 | x ∈ ker(G2G

T
1 )
}

,

(ii) dim HullC2(C1) = k1 − rk(G2G
T
1 ), and

(iii) k1 − dim HullC2(C1) = k2 − dim HullC1(C2).
Proof: (i) (⊆) If c ∈ HullC2(C1) = C1 ∩ C⊥2 , then c =

xG1 for some x ∈ Fk1
q and G2c

T = 0. Hence, G2G
T
1 xT = 0,

which means that x ∈ ker(G2G
T
1 ). We conclude that c ∈{

xG1 | x ∈ ker(G2G
T
1 )
}

.
(⊇) If c ∈

{
xG1 | x ∈ ker(G2G

T
1 )
}

then there is x ∈
ker(G2G

T
1 ) such that c = xG1 indicating that c ∈ C1.

Furthermore, G2c
T = G2G

T
1 xT = 0, demonstrating that

c ∈ C⊥2 . Thus, c ∈ C1 ∩ C⊥2 = HullC2(C1).
(ii) The matrix G1 ∈ Fk1×n

q has rank k1, so it defines the
injective transformation TG1 : Fk1

q → Fn
q given by x 7→ xG1.
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Combining this fact with (i) shows

dim HullC2(C1) = dim
{
xG1 | x ∈ ker(G2G

T
1 )
}

= dim
{
x | x ∈ ker(G2G

T
1 )
}

= dimker(G2G
T
1 )

= k1 − rk(G2G
T
1 ).

(iii) This is a consequence of rk(G2G
T
1 ) = rk(G1G

T
2 )

and (ii). □
A monomial matrix is an invertible matrix with rows of

weight one. If all nonzero entries of a monomial matrix are
ones, it is called a permutation matrix.

Definition 2.3: Two codes C and C ′ over Fq of the same
length are monomially equivalent, or equivalent for short,
if there exists a monomial matrix M such that

C ′ = CM = {cM | c ∈ C}.

In fact, according to MacWilliams’ theorem, every isometry
on Fn

q with respect to the Hamming metric is given by a
monomial matrix [29, Theorem 4]. As monomial equivalence
preserves the weight distributions, equivalent codes have the
same basic parameters: length, dimension, and minimum dis-
tance. It is easy to see that the duals of equivalent codes
are equivalent. More precisely, C and C ′ are equivalent with
C ′ = CM if and only if C ′

⊥ and C⊥ are equivalent with
C ′
⊥ = C⊥PD−1, where M = PD, P is a permutation

matrix, and D is a nonsingular diagonal matrix.
Given two codes C1, C2 ⊆ Fn

q , we aim to find equivalent
codes that define a relative hull of dimension that is increased
or decreased by one from that of the hull of the original
codes and then proceed iteratively. More precisely, we are
looking for codes C ′1 and C ′2 equivalent to C1 and C2,
respectively, such that dim HullC′

2
(C ′1) = dim HullC2(C1)+1

or dim HullC′
2
(C ′1) = dim HullC2(C1) − 1. The following

observation shows that modifying only one of the codes is
enough to increase or decrease the relative hull dimension.
In other words, when we look for codes C ′1 and C ′2 equivalent
to C1 and C2 such that dim HullC′

2
(C ′1) = dim HullC2(C1)+1

or dim HullC′
2
(C ′1) = dim HullC2(C1)−1, we can always take

C ′2 = C2.
Proposition 2.4: If Ci ⊆ Fn

q is a code and Mi ∈ Fn×n
q is

a monomial matrix for i = 1, 2, then

dim HullC2M2(C1M1) = dim HullC2M (C1)

= dimHullC2(C1M
T ),

where M = M2M
T
1 .

Proof: Let G1 and G2 be generator matrices for C1 and
C2, respectively. By Proposition 2.2 (ii),

dim HullC2M2(C1M1) = k1 − rk(G2M2(G1M1)T )

= k1 − rk(G2MGT
1 )

= dimHullC2M (C1).

Noting that G2MGT
1 = G2(G1M)T , we also see that

dim HullC2M (C1) = dim HullC2(C1M
T ),

which proves the assertion. □

B. Hermitian and Galois Relative Hulls

In [12], Fan and Zhang introduced the Galois inner products,
a generalization of the Euclidean and Hermitian inner prod-
ucts, and found self-orthogonal codes with respect to the new
inner product. The Galois inner products were further studied
to build LCD codes [23] and to get new families of quantum
codes with a broader range of parameters (see, for example,
[7], [24]). This section reviews the Galois inner products and
the relative hulls with respect to them. It also demonstrates
why, for our purposes, it is sufficient to focus on the classical
Euclidean relative hull (rather than these more general Galois
relative hulls).

Consider the finite field Fq , where q = pm for a prime p and
a positive integer m. For any integer e such that 0 ≤ e < m,
the e-Galois inner product for x, y ∈ Fn

q is given by

x ·e y =
n∑

i=1

xiy
pe

i ∈ Fq.

Taking e = 0 recovers the Euclidean inner product in Fn
q .

Taking e = m
2 when m is even produces the usual Hermitian

inner product in Fn
q that is denoted by x ·h y. The e-Galois

dual of a code C ⊆ Fn
q is defined by

C⊥e =
{
x ∈ Fn

q | x ·e c = 0, for all c ∈ C
}

.

The Hermitian dual is denoted by C⊥h . Given two codes
C1 and C2 over Fq , we define the e-Galois relative hull of
C1 with respect to C2 as

HulleC2
(C1) = C1 ∩ C⊥e

2 .

We denote the Hermitian relative hull by HullhC2
(C1). The e-

Galois relative hulls HulleC1
(C1) and HullhC1

(C1) are denoted
respectively by Hulle(C1) and Hullh(C1).

Given a code C ⊆ Fn
q , consider the code

Cpe

= {(cpe

1 , . . . , cpe

n ) | (c1, . . . , cn) ∈ C}.

Since the map Fq → Fq : x 7→ xpe

is bijective, we have
that if G = [aij ] ∈ Fk×n

q is a generator matrix of C, then
Gpe

= [ape

ij ] ∈ Fk×n
q is a generator matrix of Cpe

. Moreover,

C⊥e = (Cpe

)⊥.

Thus,

HulleC2
(C1) = Hull

Cpe

2
(C1)

and Hulle(C) = HullCpe (C). (1)

Consequently, to consider the relative hull of a code C1 with
respect to C2 and any e-Galois inner product, it suffices to
consider the relative hull of C1 with respect to C ′2 := Cpe

2

and the Euclidean inner product.

C. Quantum Codes

A series of works in the 1990s showed how a
self-orthogonal code or two linear codes subject to a
dual-containment constraint give rise to quantum error-
correcting codes. Since then, many quantum codes in the liter-
ature have relied on the dual of a code. In 2006, Brun et al. [4]
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demonstrated that the duality requirement could be removed
by using the entanglement, paving the way for any linear
code or pair of linear codes to design Entanglement-Assisted
Quantum Error-Correcting Codes (EAQECCs). The cost of
the pre-shared entanglement can affect the analysis of the
performance of a code. Thus, looking for constructions with
different required numbers of pairs of maximally entangled
qudits is valuable. Moreover, EAQECCs have been used
recently for secret sharing [34]. Building on the work of
Wilde and Brun [39], Guenda et al. [21] showed that the
dimension of the hull of the linear code could capture
the necessary entanglement. In this subsection, we review the
concepts from the recent work [15], [16] that motivate the
remainder of this paper.

Recall that the standard notation [[n, κ, δ; c]]q describes a
quantum code Q that is a q-ary EAQECC that encodes κ
logical qudits into n physical qudits with the help of n−κ−c
ancillas and c pairs of maximally entangled qudits; the code is
able to detect any error affecting at most d−1 of the physical
qudits. If for any error E affecting less than d qudits, we have
vT Eu = 0 for any v, u ∈ Q, we say that Q is pure.

There are several constructions of EAQECCs using linear
codes. For example, we have the following two classical
constructions using the Euclidean and the Hermitian inner
products.

Theorem 2.5 (CSS Construction, [15, Theorem 4]): If Ci

is an [n, ki]q-code for i = 1, 2, then there exists an
[[n, κ, δ; c]]q-quantum code Q with

c = k1 − dim HullC2(C1), κ = n− k1 − k2 + c,

and δ =

{
min

{
d(C⊥1 ), d(C⊥2 )

}
if C⊥1 ⊆ C2

min {wt1, wt2} otherwise,

where wt1 = wt
(
C⊥1 \HullC1(C2)

)
and wt2 = wt

(
C⊥2 \

HullC2(C1)
)
. Moreover, if δ = min{d(C⊥1 ), d(C⊥2 )}, then

Q is pure.
Theorem 2.6 (Hermitian Construction, [15, Theorem 3]):

If C is an [n, k]q2 -code, then there exists an [[n, κ, δ; c]]q-
quantum code Q with

c = k − dim Hullh(C), κ = n− 2k + c, and

δ =

{
d(C⊥h) if C⊥h ⊆ C

min
{
wt(C⊥h \Hullh(C))

}
otherwise.

Moreover, if δ = d(C⊥h), then Q is pure.
The following Singleton-type bound holds for the CSS and

Hermitian constructions.
Theorem 2.7 (Singleton-Type Bound [27]): If Q is an

[[n, κ, δ; c]]q-quantum code obtained via the CSS or the
Hermitian construction, then

2δ + κ ≤ n + c + 2.

Remark 2.8: Let Ci be an [n, ki]q-code with generator
matrix Gi for i = 1, 2. Note that Proposition 2.2 (ii) implies
that if Q is a quantum code constructed via the CSS con-
struction using the codes C1 and C2, then the parameter c,
the required number of pairs of maximally entangled quantum

states, can be seen in terms of the generator matrices:

c = rk(G2G
T
1 ) = rk(G1G

T
2 ).

This implies that swapping the role of C1 and C2 does not
affect the parameters of the resulting quantum code.

III. REDUCING THE RELATIVE HULL

Let Ci be an [n, ki]q-code for i = 1, 2. This section aims
to repeatedly reduce the relative hull dimension HullC2(C1)
by one using equivalent codes. We use the phrase reduce
the (dimension of the) relative hull to mean to determine
equivalent codes that define a relative hull of dimension less
than that of the original codes. According to Proposition 2.4,
we only need to find an equivalent code for one of the linear
codes. Thus, we seek a code C ′2 equivalent to C2 such that
dim HullC′

2
(C1) = dimHullC2(C1)− 1.

For any λ = (λ1, . . . , λn) ∈ (F∗q)n, we define the diagonal
matrix Dλ = diag(λ1, . . . , λn). Let C ⊆ Fn

q be a code and
Sn the symmetric group on n symbols. If σ ∈ Sn, the image
of C obtained by permuting the entries of every codeword
according to σ is denoted by Cσ . The permutation matrix
associated with σ is denoted by Pσ .

Remark 3.1: Note that Cσ = {cPσ | c ∈ C} . Any mono-
mial matrix M is of the form M = DλPσ , for some λ ∈ (F∗q)n

and some permutation σ ∈ Sn. Thus, any code C ′ monomially
equivalent to C is of the form C ′ = CDλPσ .
When equivalent codes reduce the dimension of the relative
hull, the following lemma specifies how much the dimension
can be reduced.

Lemma 3.2: Let Ci be an [n, ki]q-code for i = 1, 2. If C ′2
is equivalent to C2, then

dim HullC′
2
(C1) ≥ max{0, k1 − k2}.

Proof: By Remark 3.1, there exists a monomial matrix
M such that C ′2 = C2M . Let G1 and G2 be generator
matrices of C1 and C2, respectively. By Proposition 2.2 (ii),
dim HullC′

2
(C1) = k1 − rk(G2MGT

1 ). The result follows as
G2MGT

1 is a k2 × k1 matrix. □
Lemma 3.2 indicates that the dimension of the relative hull

of a code C1 with respect to C2 can be reduced (at most)
to the difference in dimensions of the two codes, in the case
that the difference is nonnegative, by replacing C1 with an
equivalent code.

One of the main results of this section proves that one can
repeatedly decrease the dimension of the relative hull by one
until it equals the lower bound given by Lemma 3.2.

Recall that the tensor product of matrices A = [aij ] ∈ Fr×n
q

and B ∈ Fm1×m2
q is the matrix that is expressed in block form

as

A⊗B =


a11B · · · a1nB
a21B · · · a2nB

...
...

ar1B · · · arnB

 ∈ Fq
rm1×nm2 .

For any two matrices A ∈ Fr×n
q and B ∈ Fn×s

q , their (usual)
product can be seen as AB =

∑n
i=1 Coli(A) ⊗ Rowi(B),
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where we use Coli(A) (resp. Rowi(A)) to denote the i-th
column (resp. row) of A. Thus, for λ ∈ (F∗q)n, we have

ADλB =
n∑

i=1

λiColi(A)⊗ Rowi(B)

= AB +
n∑

i=1

(λi − 1)Coli(A)⊗ Rowi(B). (2)

If P = P(ij) is the permutation matrix that interchanges rows
i and j, then

APB = AB

+ (Colj(A)− Coli(A))⊗ (Rowi(B)− Rowj(B)) . (3)

Now, we will successively decrease the dimension of a
relative hull, say HullC2(C1), by one via equivalent codes.

Theorem 3.3: Let Ci be an [n, ki]q-code for i = 1, 2 with
q > 2. For any ℓ with max{0, k1 − k2} ≤ ℓ ≤
dim HullC2(C1), there exists a code C2,ℓ equivalent to C2 such
that

dim HullC2,ℓ
(C1) = ℓ.

Therefore, the dimension of the relative hull of C1 with respect
to C2 can be repeatedly decreased by one until it is equal to
max{0, k1 − k2} by replacing C2 with an equivalent code.

Proof: Define ℓ1 = dim HullC2(C1) and ℓ2 =
dim HullC1(C2). We may assume that HullC1(C2) is given
by a generator matrix [Iℓ2 A2] where Iℓ2 is an identity matrix
of size ℓ2, since we seek a code equivalent to C2. Extend
[Iℓ2 A2] to a generator matrix

G2 =
(

Iℓ2 A2

0 B2

)
of C2. Similarly, let [A1 B1] be a generator matrix of
HullC2(C1), where A1 is of size ℓ1 × ℓ2, and

G1 =
(

A1 B1

D1 E1

)
is a generator matrix of C1. Observe that [Iℓ2 A2]GT

1 = 0 and
[A1 B1]GT

2 = 0, since the first matrix in each product has
rows in the dual of the code generated by the second term of
each product, then

G2G
T
1 =

(
AT

1 + A2B
T
1 DT

1 + A2E
T
1

B2B
T
1 B2E

T
1

)
=
(

0 0
0 B2E

T
1

)
,

where B2E
T
1 is a (k2 − ℓ2) × (k1 − ℓ1) matrix. By Proposi-

tion 2.2 (iii), k2 − ℓ2 = k1 − ℓ1, so B2E
T
1 is a square matrix.

This, together with Proposition 2.2(ii), implies that B2E
T
1 has

full rank. The goal is to increase the rank of G2G
T
1 , meaning

to determine a code equivalent to C2 with generator matrix G′2
so that rk

(
G′2G

T
1

)
> rk

(
G2G

T
1

)
.

Case 1: Assume A1 ̸= 0. Then there is 1 ≤ j ≤ ℓ2 such
that Rowj(GT

1 ) ̸= 0. Set λ = (1, . . . , 1, λj , 1, . . . , 1) ∈ (F∗q)n

to be the vector with all entries equal to 1 except in position j
where the entry is λj ̸= 1. By Eq. (2), we have

G2 DλGT
1

= G2G
T
1 + (λj − 1)Colj(G2)⊗ Rowj(GT

1 )

=
(

(λj − 1)eT
j ⊗ Rowj(AT

1 ) (λj − 1)eT
j ⊗ Rowj(CT

1 )
0 B2E

T
1

)
.

Observe that rk
(
G2 DλGT

1

)
= k2−ℓ2+1, because λj ̸= 0, 1.

Case 2: Assume A1 = 0. In this case, G1 =
(

0 B1

D1 E1

)
.

Recall that B1 ∈ Fℓ1×(n−ℓ2)
q has full rank. After row oper-

ations, we may consider that there are ℓ1 integers 1 ≤ i1 <
. . . < iℓ1 ≤ n−ℓ2 such that Colij

(B1) = e′j and Colij
(E1) =

0 for 1 ≤ j ≤ ℓ1.
Subcase (i): Assume that for some 1 ≤ j ≤ ℓ1, Colij

(A2) ̸=
0. Let ν = ℓ2 + ij . For an element λν ∈ F∗q such that λν ̸= 1,
define λ = (1, . . . , 1, λν , 1, . . . , 1) ∈ (F∗q)n as the vector with
all entries equal to 1 except in position ν where the entry is
λν . Then the matrix

G2DλGT
1 =

(
(λν − 1)Colij

(A2)⊗ e′j 0
(λν − 1)Colij (B2)⊗ e′j B2E

T
1

)
has rank k2 − ℓ2 + 1.

Subcase (ii): Assume that Colij (A2) = 0 for all 1 ≤ j ≤ ℓ1.
Let P be the permutation matrix that interchanges rows 1 and
ℓ2 + i1. By Eq. (3),

G2PGT
1 = G2G

T
1

+
(
−eT

1 ⊗−e′1 −eT
1 ⊗ Row1(DT

1 )
Coli1(B2)⊗−e′1 Coli1(B2)⊗ Row1(DT

1 )

)
.

Since the row space of the second term is generated by
the row (−e′1, Row1(DT

1 )), then the matrix G2PGT
1 has

rank k2 − ℓ2 + 1.
Take G′2 = G2P . Then C2 is equivalent to the code C ′2

with generator matrix G′2. Moreover, in any case,

rk
(
G′2G

T
1

)
= rk

(
G2G

T
1

)
+ 1.

According to Proposition 2.2(ii),

dim HullC′
2
(C1) = k1 − rk

(
G′2G

T
1

)
= k1 −

(
rk
(
G2G

T
1

)
+ 1
)

= dimHullC2(C1)− 1,

meaning we have decreased the dimension dim HullC2(C1)
of the relative hull by one. We can continue this process
until the rank of the matrix G2PGT

1 is k2, which means
dim HullC′

2
(C1) = max{0, k1 − k2}. □

Algorithm 2 captures the procedure written in the proof of
Theorem 3.3. The input and the output are given in terms
of the generator matrices of the pair of codes. To simplify
this algorithm, we first use Algorithm 1 so that the generator
matrices are of the appropriate form.

We now give some examples to illustrate how the proof
of Theorem 3.3 constructs equivalent codes that reduce the
relative hull, using [2], [3], [20] to make the computations.

Example 3.4: Let a be a primitive element of F9, with
a2 − a− 1 = 0, and C1 and C2 the codes over F9 generated
respectively by

G1 =


1 0 0 0 0 1 a
0 1 0 0 −a− 1 −a− 1 a
0 0 1 0 a + 1 a + 1 a + 1
0 0 0 1 0 0 0
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Algorithm 1 Systematic-Like Form for the Generator
Matrices
Data: G1 ∈ Fk1×n

q , G2 ∈ Fk2×n
q full-rank matrices.

Result: G′1 ∈ Fk1×n
q , G′2 ∈ Fk2×n

q

1 (k1, k2)← (rk G1, rk G2)
2 (ℓ1, ℓ2)← (k1 − rk(G2G

T
1 ), k2 − rk(G2G

T
1 ))

3 For i = 1, 2, pick Mi ∈ Fki×ki
q be a non-singular

matrix such that the first ℓi rows are in
ker(G1+(i%2)G

T
i ).

4 (G1, G2)← (M1G1, M2G2)
5 Pick M3 a non-singular matrix, P a permutation

matrix such that (M3)i,j = 0 if i ≤ ℓ2 and j ≥ ℓ2,

and M3G2P =
(

Iℓ2 A2

0 B2

)
.

6 Let M4 be a non-singular matrix such that
(M4)ij = 0 if i ≤ ℓ1 and j ≥ ℓ1 and M4G1 is in
row-reduced-echelon form.

7 G′1 ←M4G1

8 G′2 ←M3G2P

and

G2 =


1 0 0 0 1 −1 0
0 1 0 0 1 −a− 1 a
0 0 1 0 a− 1 −a− 1 a
0 0 0 1 0 0 0

 .

The subspaces HullC2(C1) and HullC1(C2) are generated by
the first three rows of G1 and G2, respectively. This example
corresponds to the proof of Theorem 3.3, Case 1. We only
need to choose λ with entries different from 1 since the first
three entries of the main diagonal are non-zero.

For 0 ≤ ℓ ≤ 3, let λ(ℓ) ∈ F7
9 be the vector such that(

λ(ℓ)
)
i
= a for 1 ≤ i ≤ 3− ℓ and

(
λ(ℓ)

)
i
= 1 for i ≥ 3− ℓ.

Let C2,ℓ be the code generated by G2Dλ(ℓ) . We have

G2Dλ(ℓ)GT
1 =


λ

(ℓ)
1 − 1 0 0 0

0 λ
(ℓ)
2 − 1 0 0

0 0 λ
(ℓ)
3 − 1 0

0 0 0 1

 .

Therefore, rk(G2Dλ(ℓ)GT
1 ) = 4 − ℓ and thus

dim HullC2,ℓ
(C1) = ℓ.

Example 3.5: Let a be a primitive element of F9, with
a2 − a− 1 = 0, and C1 and C2 the codes over F9 generated
respectively by

G1 =


0 0 1 −1 0 0
0 0 0 0 1 −1
−a 0 1 0 0 0
0 −a− 1 0 0 1 0



and G2 =


1 0 a a 0 0
0 1 0 0 a + 1 a + 1
0 0 1 1 0 0
0 0 0 0 1 1

 .

The relative hulls are generated by the first two columns of
each matrix. As G1 has its principal minor of size 2 equal to
zero, this example corresponds to the proof of Theorem 3.3,

Algorithm 2 Reducing the Hull of Two Codes

Data: G1 ∈ Fk1×n
q , G2 ∈ Fk2×n

q full-rank matrices.
Result: G′2 a full-rank matrix with

rk(G1(G′2)
T ) = rk(G1G

T
2 ) + 1.

1 Replace (G1, G2) with the result of Algorithm 1.
2 if [(G1)ij ]

ℓ1
i,j=1 ̸= 0 then

3 j ← min{h ∈ [ℓ1] : ∃i ∈ [ℓ1], (G1)ij ̸= 0}
4 Take λj ∈ Fq \ {0, 1}.
5 λ← λjej +

∑
i∈[n]\{j} ei

6 G′2 ← G2Dλ

7 else
8 if ∃j ∈ [n] such that wt(Colj(G1)) = 1 and

Colj(G2) ̸= 0 then
9 Take λj ∈ Fq \ {0, 1}.

10 λ← λjej +
∑

i∈[n]\{j} ei

11 G′2 ← G2Dλ

12 else
13 Take j ∈ [n] such that Colj(G1) = e1.
14 Take P ′, the permutation matrix that permutes

rows 1 and j.
15 G′2 ← G2P

′

16 end
17 end

Case 2. We can use the first two entries of the last four columns
of G2 to modify the hull size (Subcase (i)) because they are
non-zero. Let λ(1) ∈ F6

9 such that λ
(1)
i = 1 for i ̸= 6 and

λ
(1)
6 = a. Let C2,1 be the code generated by G2Dλ(1) . The

matrix

G2Dλ(1)GT
1 =


0 0 0 0
0 −a 0 0
0 0 1 0
0 −a + 1 0 1


has rank 3 and dim HullC2,1(C1) = 1. We can check that the
last three rows of G2 do not belong to HullC1(C2,1), so we
are still in Case 2, Subcase (i) of the proof of Theorem 3.3.
Let λ(2) ∈ F6

9 such that λ
(2)
i = 1 for i ̸= 4 and λ

(2)
4 = a. Let

C2,2 be the code generated by G2Dλ(1)Dλ(2) . The matrix

G2Dλ(1)Dλ(2)GT
1 =


−1 0 0 0
0 −a 0 0

−a + 1 0 1 0
0 −a + 1 0 1


has rank 4 and dim HullC2,2(C1) = 0.

Example 3.6: Let a be a primitive element of F9, with
a2 − a− 1 = 0, and C1 and C2 the codes over F9 generated
respectively by

G1 =


0 0 −a −a 1 0
0 0 −a −a 0 1
0 0 1 0 0 0
0 0 0 1 0 0



and G2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 a a
0 0 0 1 a a

 .
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The relative hulls are generated by the first two rows of
each matrix. The principal minor of size 2 of G1 is 0, so this
example corresponds to the proof of Theorem 3.3, Case 1.
Since the (G2)i,j = 0 for i = 1, 2 and 3 ≤ j ≤ 6, we are in the
Subcase (ii). We need to perform some column permutations
to G2 to get an equivalent code with a smaller relative hull
than C2.

Let P1 be the permutation matrix that permutes columns 5
and 1, and let C2,1 be the code generated by G2P1. The matrix

G2P1G
T
1 =


1 0 0 0
0 0 0 0
−a 0 1 0
−a 0 0 1


has rank 3, therefore dim HullC2,1(C1) = 1.

Let P2 be the permutation matrix that permutes columns 2
and 6, and let C2,0 be the code generated by G2P1P2. The
matrix

G2P1P2G
T
1 =


1 0 0 0
0 1 0 0
−a −a 1 0
−a −a 0 1


has rank 4 and thus, dim HullC2,0(C1) = 0.

Let C1 and C2 be two codes over Fq with q = pm > 2, and
let e be an integer such that 0 ≤ e < m. Applying Theorem 3.3
to the relative hull of C1 with respect to Cpe

2 , we obtain a
similar result for the e-Galois hull of C1 with respect to C2.
This consequence is captured in the next statement.

Corollary 3.7: Let Ci be an [n, ki]q-code for i = 1, 2 with
q = pm > 2. Take e such that 0 ≤ e < m. For any ℓ with
max{0, k1− k2} ≤ ℓ ≤ dim HulleC2

(C1), there is a code C2,ℓ

equivalent to C2 such that

dim HulleC2,ℓ
(C1) = ℓ.

Therefore, the dimension of the e-Galois relative hull of
C1 with respect to C2 can be repeatedly decreased by one
until it is equal to max{0, k1 − k2} by replacing C2 with an
equivalent code.

Proof: This statement follows immediately from
Theorem 3.3 and Eq. (1). □

Let Ci be an [n, ki]q-code for i = 1, 2. If c1 =
(c11, c12, . . . , c1n) ∈ C1 and c2 = (c21, c22, . . . , c2n) ∈ C2,
then their Schur product is defined by

c1 ⋆ c2 = (c11c21, c12c22, . . . , c1nc2n) ∈ Fn
q .

The Schur product of the codes C1 and C2, denoted by
C1 ⋆ C2, is defined as the Fq-vector space spanned by the
set {c1 ⋆ c2 | c1 ∈ C1, c2 ∈ C2} . For an element λ in Fn

q ,
λ ⋆ C2 denotes the Fq-vector space spanned by the set
{λ ⋆ c2 | c2 ∈ C2}.

Proposition 3.8: Let C ⊆ Fn
q be a code with q = pm > 2.

Take e such that 0 ≤ e < m and define ℓ = dim Hulle(C).
If there exists x ∈ F∗q such that xpe+1 ̸= 1, then dim Hulle(λ⋆

C) = ℓ− 1 for some λ ∈
(
F∗q
)n

.
Proof: Let G be a generator matrix of C. As C⊥e =

(Cpe

)⊥,

dim Hulle(λ ⋆ C) = dim C − rk(GDλpe+1(Gpe

)T ),

where (Gpe

)ij = (Gij)pe

. The proof of Theorem 3.3 guaran-
tees that we can reduce the rank of this matrix as long as there
exists x ∈ Fq with xpe+1 ̸= 1. □

As a corollary, we can prove some of the significant results
that were initially proved by Carlet et al. (existence of LCD
codes for the case of the Euclidean and the Hermitian inner
product [8]) and Luo et al. (the step-wise reduction of the
dimension of the Hermitian hull [27]).

Corollary 3.9: Let C ⊆ Fn
q be a linear code. The following

hold:
1) If q > 3 and 0 ≤ ℓ ≤ dim Hull(C), then there is a code

Cℓ equivalent to C such that Hull(Cℓ) = ℓ.
2) If q > 4 is a square and 0 ≤ ℓ ≤ dim Hullh(C), then

there is a code Cℓ equivalent to C such that Hullh(Cℓ) =
ℓ.

Proof: The Euclidean hull is the e-Galois hull with e = 0.
Thus, it is enough to guarantee that x2 − 1 ̸= 0 for some
x ∈ F∗q , which happens if q > 3.

The Hermitian hull is also an e-Galois hull where e satisfies
pe =

√
q and p is the characteristic of the field. By Propo-

sition 3.8, we can reduce the hull using an equivalent code
as long as there is x ∈ F∗q such that x

√
q+1 ̸= 1. Note that

as q > 4,
√

q + 1 < q − 1. Thus, not all the elements of F∗q
can be roots of the polynomial f(t) = t

√
q+1 − 1, meaning

that there is x ∈ F∗q such that x
√

q+1 ̸= 1. Another way to
see this is by noticing that x

√
q+1 is the norm of x with

respect to the extension Fq/F√q . As the norm is surjective,
there are non-zero elements with a norm different from 1
when q > 4. □

Remark 3.10: If we only consider monomial matrices of the
form M = Dλ in the definition of equivalent codes, meaning
no permutations of coordinates are allowed, then it may be
impossible to reduce dim HullC2(C1) to max{0, k1−k2}. The
following example illustrates this fact.

Example 3.11: Let C1 and C2 be the codes over Fq gener-
ated respectively by

G1 = (1 1 0 0) and G2 = (0 0 1 1) .

Note that max{0, k1−k2} = 0 and that G1DλGT
2 = 0 for any

λ ∈ (F∗q)n. Hence, dim HullC2Dλ
(C1) = 1 for any λ ∈ (F∗q)n.

To get the minimum possible hull, we need permutations.
If P is the permutation matrix that interchanges the first
and the fourth column, then G1P

T GT
2 = I1 and thus

HullC2P (C1) = 0.

IV. INCREASING THE RELATIVE HULL

Let Ci be an [n, ki]q-code for i = 1, 2. In this section,
we give conditions that allow us to find equivalent codes that
successively increase the dimension of the relative hull of
C1 with respect to C2 by one. As in Section III, according
to Proposition 2.4, we only need to show that an equivalent
code exists for one of the linear codes. Hence, we aim to
determine when it is possible to find a code C ′1 equivalent to
C1 such that dim HullC2(C

′
1) = dimHullC2(C1) + 1.

The following lemma gives an upper bound on the increased
dimension of the relative hull. However, as we will see, it is
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only possible sometimes to increase the dimension of the
relative hull using equivalent codes.

Lemma 4.1: Let Ci be an [n, ki]q-code for i = 1, 2. If C ′1
is equivalent to C1, then

dim HullC2(C
′
1) ≤ min{k1, n− k2}.

Proof: This is clear by the definition of HullC2(C
′
1). □

By Theorem 3.3, we can decrease the relative hull dimen-
sion by increasing the rank of the matrix G1G

T
2 . To increase

the relative hull dimension instead, we could try to mimic this
idea by decreasing the rank of the matrix G1G

T
2 until it is

equal to 0. Unfortunately, the following example shows that
reducing the rank of this matrix G1G

T
2 is not always possible.

Example 4.2: Let C1 and C2 be the codes over Fq gener-
ated respectively by

G1 =
(

1 0 −1 0
0 1 0 −1

)
and G2 =

(
1 0 1 1
0 1 0 0

)
.

For any permutation matrix P and for any λ ∈ (F∗q)4, the
second column of G1DλPGT

2 is either ±(λ2 0)T or ±(0 λ2)T .
Thus, the rank of G1DλPGT

2 is at least 1.
We can relate the maximum dimension of the hull under

isometries of the form Dλ with the dual of the Schur product
of the codes.

Proposition 4.3: If Ci is an [n, ki]q-code for i = 1, 2, then

max{dim HullC2(C1Dλ) | λ ∈ (F∗q)n}
≥ max wt

(
(C1 ⋆ C2)⊥

)
− n + min{k1, k2}.

Proof: Let G1 and G2 be generator matrices of C1 and
C2, respectively. According to Proposition 2.2 (ii), we need to
show that

min
{
rk(G1DλGT

2 ) | λ ∈ (F∗q)n
}

≤ n−max wt
{
(C1 ⋆ C2)⊥

}
.

Suppose max wt
(
(C1 ⋆ C2)⊥

)
= n − ℓ, and take γ ∈ (C1 ⋆

C2)⊥ with wt(γ) = n − ℓ. If ℓ ≥ min{k1, k2}, the result
follows as rk(G1DλGT

2 ) ≤ min{k1, k2} for any λ ∈ (F∗q)n.
Assume that ℓ < min{k1, k2}. Without loss of generality,
we can assume that the first ℓ entries of γ are equal to zero.
Define λ = (1, . . . , 1, γℓ+1, . . . , γn). Then

G1DλGT
2 =

(
ℓ∑

h=1

aihbjh

)k1,k2

i,j=1

= G1

(
Iℓ 0
0 0

)
GT

2 .

Since ℓ < min{k1, k2}, the rank of this product is at most ℓ,
and we have the conclusion. □

In the case where C1 = C2, the code (C1 ⋆ C2)⊥ was used
in [31] to find self-orthogonal truncations of C1.

It is evident that the bound given by Proposition 4.3 is sharp
for codes C1 and C2 such that there is an equivalent code C ′

to C1 with C⊥2 ⊆ C ′. The following example shows that the
bound may be sharp even when such an equivalent code does
not exist.

Example 4.4: Take G1 = G2 =
(

1 0 0
0 1 β

)
∈ F2×3

q with

β ̸= 0. For any λ = (λ1, λ2, λ3) ∈ (F∗q)3, we have

G1DλGT
2 =

(
λ1 0
0 λ2 + β2λ3

)
.

Then, rk
(
G1DλGT

2

)
= 1 when λ2 = −β2λ3; otherwise,

rk
(
G1DλGT

2

)
= 2. Since 1 is the smallest rank achievable

for any λ, the maximum rank of the relative hull is 2−1 = 1.
On the other hand, if C is the code generated by G1, then

a generator matrix for the code C ⋆ C is(
1 0 0
0 1 β2

)
.

It is clear that (C ⋆ C)⊥ = ⟨(0,−β2, 1)⟩. Then

max wt((C ⋆ C)⊥)− n + k1 = 2− 3 + 2 = 1,

demonstrating that equality is achievable in Proposition 4.3.
The bound of Proposition 4.3 is an upper bound for the

dimension of the relative hull.
Proposition 4.5: If Ci is an [n, ki]q-code for i = 1, 2, and

k1 ≤ k2, then

dim HullC2(C1) ≤ max wt((C1 ⋆ C2)⊥)−n + k1.

Proof: Let G1 and G2 be generator matrices of C1 and
C2, respectively, such that

G1G
T
2 =

(
0 0
0 Iℓ

)
,

where ℓ is defined as k1 − dim HullC2(C1). Since a basis for
C1 ⋆ C2 is given by the set {Rowi(G1) ⋆ Rowj(G2) : i =
1, . . . , k1, j = 1, . . . , k2}, then λ =

∑
i∈[n−l] ei ∈ (C1⋆C2)⊥,

and the conclusion follows. □
The summary of these results is the following theorem.
Theorem 4.6: Let Ci be an [n, ki]q-code with q > 2 for

i = 1, 2. For any ℓ with max{0, k1−k2} ≤ ℓ ≤ max wt((C1⋆
C2)⊥)−n+k1, there exists a code C1,ℓ equivalent to C1 such
that

dim HullC2(C1,ℓ) = ℓ.

In particular, if max wt((C1 ⋆C2)⊥) = min{n, 2n−k2−k1},
ℓ runs over all the possible values of dim HullC2(C

′
1), where

C ′1 is a code equivalent to C1.
Proof: The result follows from Proposition 4.3,

Theorem 3.3, and Lemma 4.1. □
Remark 4.7: We remark that an algorithm for increasing the

relative hull would require finding a codeword in (C1 ⋆ C2)⊥

of appropriate weight. Provided such a word can be found,
one can implement an algorithm similar to Algorithm 2.

We can find a worse but easier-to-compute lower bound
on the maximum rank of the relative hull by using a bound
from [32] on optimal anticodes.

Lemma 4.8 [32]: If C ⊆ Fn
q is a linear code, then

dimFq (C) ≤ max wt(C).
A code C ⊆ Fn

q with dimFq
(C) = maxwt(C) is said to be

an optimal linear anticode.
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Corollary 4.9: If Ci is an [n, ki]q-code for i = 1, 2, and
k1 ≤ k2, then

max{dim HullC2(C1Dλ) | λ ∈ (F∗q)n}
≥ k1 − dim(C1 ⋆ C2).

Proof: By Lemma 4.8, dim(C1 ⋆ C2)⊥ ≤ max wt(C1 ⋆
C2)⊥. Thus, Proposition 4.3 gives the conclusion. □

Remark 4.10: Assume that q ̸= 2. An optimal anticode of
dimension k is permutation equivalent to Fk

q⊕{0}n−k; see [32]
for details. Moreover, the dual of an optimal anticode is an
optimal anticode. Consequently, the bound in Corollary 4.9
can only be met if (C1 ⋆ C2)⊥ is an optimal anticode, which
implies C1 ⋆ C2 is an optimal anticode. Thus, the minimum
rank of G1DλGT

2 equals the maximum weight of C1 ⋆ C2.

V. APPLICATIONS TO QUANTUM CODES

Many quantum code constructions focus on creating codes
that do not require entanglement assistance or pairs of max-
imally entangled quantum states. However, more recently,
propagation rules to construct quantum codes have been estab-
lished [27], [28]. Luo et al. constructed in [27] new quantum
codes with reduced length by increasing the parameter c and
using the Hermitian construction of Theorem 2.5. Luo et al.
also gave three new propagation rules related to entangle-
ment using the Hermitian construction in [28]. The first rule
increases the parameter c while increasing the dimension, the
second rule keeps c unchanged while increasing the length,
and the third rule decreases c while increasing the length.

We now state some results that are consequences of the
previous sections.

Theorem 5.1: Let Ci be an [n, ki]q-code for i = 1, 2, with
q > 2 and k1 ≤ k2. For any integer c with k1 − dim(C1 ∩
C⊥2 ) ≤ c ≤ k1, there is an [[n, κ, δ; c]]q quantum code Q with

κ = n− k1 − k2 + c and δ ≥ min{d(C⊥1 ), d(C⊥2 )}.

Moreover, if δ = min{d(C⊥1 ), d(C⊥2 )}, then Q is pure.
Proof: We obtain the result using Theorem 3.3 and the

CSS construction given in Theorem 2.5. □
Let Q be the quantum code obtained via the CSS construc-

tion using C1 and C2 and δ(Q) = min{wt(C⊥1 \C2), wt(C⊥2 \
C1)}, where we denote C⊥1 \ (C2 ∩ C⊥1 ) by C⊥1 \ C2 for
the sake of simplicity. In general, if we take the quantum
code Q′ constructed via the CSS construction using C1 and
C ′2, where C ′2 is equivalent to C2 and C1 ∩ C ′2

⊥ = {0},
then δ(Q′) = min{wt(C⊥1 \ C ′2

⊥), d(C ′2
⊥)}. If Q is not

pure, it is possible that δ(Q) ≥ δ(Q′) since the equivalence
can worsen the minimum distance. Otherwise, we have the
following result.

Proposition 5.2: Let Q be the pure quantum code obtained
via the CSS construction using C1 and C2. If Q′ is a quantum
code obtained via the CSS construction using C1 and a
monomially equivalent code C ′2 to C2, then δ(Q′) ≥ δ(Q).

Proof: As Q is pure, we obtain that δ(Q) =
min{d(C⊥1 ), d(C⊥2 )}. Note that δ(Q′) = min{wt(C⊥1 \
C ′2), wt(C ′⊥2 \ C1)} ≥ min{d(C⊥1 ), d(C ′⊥2 )} = δ(Q). Thus,
the result follows. □

If d(C⊥1 ) < d(C⊥2 ), the equality in the previous corollary
depends on how many minimum weight codewords of C⊥1
are outside C2. If any code equivalent to C2 does not contain
all minimum weight codewords of C⊥1 , then the purity is
preserved. The following corollary provides an instance of
such constructions.

Proposition 5.3: Let Q be the pure quantum code obtained
via the CSS construction using C1 and C2. Assume one of the
following conditions holds:

1) d(C⊥1 ) < min{d(C2), d(C⊥2 )}.
2) d(C⊥1 ) = d(C⊥2 ) and

d(C⊥1 ) < min{d(C1), d(C2)}.
Then, any quantum code Q′ constructed via the CSS construc-
tion using C1 and an equivalent code C ′2 to C2 is pure and
δ(Q′) = δ(Q) = d(C⊥1 ).

Proof: As Q is pure, we obtain that δ(Q) =
min{d(C⊥1 ), d(C⊥2 )}. Note that δ(Q′) = min{wt(C⊥1 \
C ′2), wt(C ′⊥2 \ C1)} and d(C2) = d(C ′2).

Assume (1): As d(C⊥1 ) < d(C2), all codewords of minimum
weight in C ′2 are outside of C ′1. Thus, wt(C⊥1 \C ′2) = d(C⊥1 ).
As d(C⊥1 ) < d(C⊥2 ) = d(C ′⊥2 ) < d(C ′⊥2 \ C1), we obtain
δ(Q′) = min{wt(C⊥1 \C ′2), wt(C ′⊥2 \C1)} = d(C⊥1 ) = δ(Q).

Assume (2): As d(C⊥1 ) < d(C2), all codewords of minimum
weight in C ′2 are outside of C ′1. Thus, wt(C⊥1 \C ′2) = d(C⊥1 ).
As d(C⊥2 ) < d(C1), then all codewords of minimum weight
in C ′1 are outside of C ′2. Thus, wt(C⊥2 \ C ′1) = d(C⊥2 ).
We obtain δ(Q′) = min{wt(C⊥1 \ C ′2), wt(C ′⊥2 \ C1)} =
min{d(C⊥1 ), d(C ′⊥2 )} = d(C⊥1 ) = δ(Q). □

Example 5.4: Let S = S1 × S2 ⊆ F2
q and g(x, y) =

g1(x)g2(y) ∈ Fq[x, y], where g(s1, s2) ̸= 0 for all (s1, s2) ∈
S. Define the tensor product

T (S, g) = RS(S1, g1)⊗ RS(S2, g2),

where RS(Si, gi) = {(f(s)/gi(s))s∈Si
| f ∈ Fq[x], deg f <

deg gi} for i = 1, 2. Note that RS(Si, gi) is a generalized
Reed-Solomon code with evaluation points in Si, dimension
deg(gi), and multipliers 1/gi(s), s ∈ Si. In [25], the authors
used the codes T (S, g) to build entanglement-assisted quan-
tum error-correcting codes with new parameters with respect
to the literature. In Table I, we build LCD codes exhibiting the
same set of parameters. But then, by computing the dual of the
square (using [3]), we prove that there is a λ ∈ (F∗q)n such that
C⊥ ⊆ λ⋆C for any of these LCD codes. Thus, Proposition 4.5
enables us to increase the hull, and Theorem 3.3 allows us to
vary the parameter c between 0 and n − k, where k is the
dimension of the code. Other works related to tensor products
and quantum codes are [11], [18], and [30].

Table I shows that by puncturing T (S, g), which is the dual
of a multivariate Goppa code [25], and using Theorem 3.3,
we can fill in some gaps or improve the minimum distance or
the dimension of some of the best-known EAQECCs recently
published by Sok [36]. Other recent related work appears
in [10] and [35].

We now show the existence of entanglement-assisted quan-
tum MDS codes for q > 2 and 1 < n ≤ q + 1.
An [[n, κ, δ; c]]q-quantum code with δ − 1 ≤ n

2 satisfying

2(δ − 1) = n− κ + c
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TABLE I

NEW EAQECCS. HERE, F∗q = ⟨a⟩ FOR EVERY ROW; THE ELEMENTS OF Fq ARE ORDERED 0, a0, . . . , aq−2 ; THE ELEMENTS OF

S = Fq × {a1, a2, . . . , ai} ARE ORDERED BY (0, a1), (a0, a1), . . . , (aq−2, a2), . . . , (0, ai), (a0, ai), . . . , (aq−2, ai);
AND GENERATOR MATRIX COLUMNS ARE ORDERED USING THE ELEMENTS IN S

TABLE II
CONDITIONS THAT GUARANTEE THE EXISTENCE OF AN [[n, n−k − h, k + 1; k − h]]q EAQMDS CODE FOR k ≤ n/2 AND FOR ANY 0 ≤ h ≤ k

is called an EAQMDS code. EAQMDS codes for δ > n
2 + 1

exist, but since we are considering codes derived from the
CSS Construction, we are concerned about codes with the
mentioned restriction. For more on the quantum Singleton type
bounds and EAQMDS codes, see [17].

Constructions in Theorem 2.5 and 2.6 give rise to EAQECCs
codes if C1 and C2 are MDS codes of the same rate in the
CSS construction, or C is a Hermitian MDS code. Many
constructions for EAQMDS codes have relied on the CSS or
the Hermitian constructions, so there is a vast literature on
how to find MDS codes with specific Euclidean, Hermitian,
or Galois hull [7], [13], [14], [26], [38]. Table II exhibits
some of the EAQMDS codes previously reported, which
were based on the possibility of finding a proper isometry
of an MDS code to get rank(GIλ2GT ) = k − h, where
G is a generator matrix. These results complement those on
unassisted (c = 0) quantum MDS codes [19], [33]. As a
generalization, we get the following result as a consequence
of Theorem 4.6.

Theorem 5.5: If q > 2, 1 < n ≤ q + 1, and 1 ≤ k ≤ n/2,
then there is an

[[n, n− k − h, k + 1; k − h]]q

EAQMDS code for any 0 ≤ h ≤ k.
Proof: Let C be a (possibly extended or double extended)

generalized Reed-Solomon code of dimension k. It is known
that C⊥ is a generalized Reed-Solomon code of dimension
n − k. Thus, there is λ ∈ (F∗q)n such that C ⊆ (λ ⋆ C)⊥,
or equivalently, dim Hullλ∗C(C) = k. Applying Theorem 3.3
to C1 = C and C2 = λ ⋆ C, we get the result. □

Remark 5.6: For k > n/2, we have a similar result to
Theorem 5.5. In fact, if q > 2, 1 < n ≤ q + 1, and k > n/2,
then there is an

[[n, n− k − h, k + 1; k − h]]q

EAQECC code for any 0 ≤ h ≤ k, but this quantum code is
not necessarily an EAQMDS code.
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Theorem 5.5 can also be extended to other families of
QMDS codes (c = 0) built with the Hermitian construction.
Indeed, by reducing the Hermitian hull, the existence of an
EAQMDS of length n ≤ q2 + 1 can be derived from the
existence of a Hermitian self-orthogonal MDS code (see [27]).
Such MDS codes have been reported in [19] and [33]. Since
QMDS are known to be pure [22], we can apply the propa-
gation rules in [17] to puncture QMDS with no assistance to
get EAQMDS codes of shorter lengths.

VI. FINAL REMARKS

Given two codes C1 and C2, we studied the relative hull
of C1 with respect to C2, which is the intersection C1 ∩C⊥2 .
We showed that the e-Galois relative hull is a particular case
of the Euclidean relative hull. We proved that the dimension of
the relative hull can always be repeatedly reduced by one by
replacing any of the two codes with a monomially equivalent
one. The proof illustrates and explains how to construct such
an equivalent code. Similarly, we gave conditions under which
the dimension of the relative hull can be increased by one
via equivalent codes. We showed some consequences of the
relative hull on quantum codes and proved the existence of
some quantum MDS codes via the CSS construction.
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