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 A B S T R A C T

In this work, exact solutions of the nonlinear cubic–quintic Duffing–van der Pol oscillator with variable 
coefficients are obtained. Two approaches have been applied, one based on the factorization method combined 
with the Field Method, and a second one relying on Painlevé analysis. Both procedures allow us to find the 
same exact solutions to the problem. The Lagrangian formalism for this system is also derived. Moreover, 
some examples for particular choices of the time-dependent coefficients, and their corresponding general and 
particular exact solutions are presented.
1. Introduction

The quest for exact solutions of nonlinear differential equations 
is an active field of research, as they describe diverse phenomena in 
physics and engineering systems. In recent decades, there has been 
a growing interest in studying nonlinear oscillators, with the aim to 
understand their different properties related to their complex dynamics, 
and even the rising of chaos. Among them, the Duffing–van der Pol 
oscillator, presented as a second order ordinary differential equation 
(ODE), is one of the most widely studied nonlinear systems [1–5]. This 
nonlinear ODE has extensive applications in physics, engineering and 
even biological problems, e.g. a model describing the propagation of 
voltage pulses along a neuronal axon [1,2]. The force-free Duffing–van 
der Pol equation is given in the form 
�̈� − 𝜇(1 − 𝑥2)�̇� + 𝛼𝑥 + 𝛽𝑥3 = 0, (1.1)

where 𝜇(1 − 𝑥2) is a damping or dissipation term, 𝜇 > 0 is a con-
stant damping coefficient, and 𝛼 and 𝛽 are real constant parameters. 
In [3], the general solution of Eq. (1.1) for certain restrictions in the 
parameters has been found in implicit form by means of an extension 
of the Prelle–Singer method. Moreover, in [4] an explicit special exact 
solution was obtained by using some effective transformations which 
linearize Eq. (1.1).
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Recently, the extended Duffing–van der Pol oscillator, also called 
cubic–quintic Duffing–van der Pol system or 𝜙6-van der Pol oscillator, 
has been studied [6–11]. This extended form of ODE contains a fifth 
degree monomial term, and the force-free equation is given in the form

�̈� − 𝜇(1 − 𝑥2)�̇� + 𝛼𝑥 + 𝛽𝑥3 + 𝛿𝑥5 = 0, (1.2)

where 𝛿 is a real constant parameter. In [6–8], analytical approximate 
solutions for some inhomogeneous cases were obtained. Furthermore, 
extensive numerical analysis for the case of external periodic exci-
tations has been carried out to study its complex dynamics [6–10]. 
In [11], an analytical general solution for Eq. (1.2) has been derived 
through the factorization method [12–17]. A variable coefficient gen-
eralization for the extended Duffing–van der Pol system including 
a time-dependent excitation and an external force has been studied 
numerically in [18].

In this paper, we consider an unforced Duffing–van der Pol oscillator 
with cubic and quintic nonlinearities and variable coefficients, referred 
as DVDP equation in the following, of the form 

�̈� +
[

𝐴(𝑡)𝑥2 + 𝐵(𝑡)
]

�̇� + 𝐶(𝑡)𝑥 +𝐷(𝑡)𝑥3 + 𝐸(𝑡)𝑥5 = 0, (1.3)

where 𝐴(𝑡) ≠ 0, 𝐸(𝑡) ≠ 0, 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) are certain smooth functions 
of time 𝑡. We apply two different approaches to search for its general 
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solution: the factorization method in combination with the so-called 
Field Method [19–22], and Painlevé’s analysis for integrable nonlinear 
ODEs [23,24]. Although they may seem completely unrelated, we 
will show that both procedures impose the same constraints in the 
coefficients of the nonlinear ODE (for the ODE to be either factorizable 
or integrable, respectively), therefore leading to the same solution.

The factorization method is a well established technique used to 
obtain exact solutions of nonlinear ODEs in an algebraic manner. It 
was widely used for linear ODEs in quantum mechanics after some 
works of Dirac to solve the spectral problem of the quantum oscillator, 
and Schrodinger’s works on the factorization of the Sturm–Liouville 
equation. Recently, diverse schemes for nonlinear second and higher 
order ODEs have been developed, providing many exact solutions 
of important nonlinear systems [13,14,17,25–27]. In this work, the 
advantages arising from the Field Method are used in the framework 
of the factorization method to obtain the general solution of (1.3).

In the late XIX century, the primeval works of renowned mathe-
maticians such as Painlevé, Picard, Gambier, Fuchs, etc. [23,24,28–30] 
focused their attention on the classification problem of differential 
equations according to the types of singularities of their solutions. 
Based on these ideas, Painlevé introduced the so-called Painlevé Prop-
erty for ODEs [23,24], later extended in a similar fashion to partial 
differential equations (PDEs) [31], which may act as an integrability 
criterion. This method has turned out to be a remarkably success-
ful approach to identify integrable families of differential equations, 
it is connected to other definitions of integrability, and it provides 
an efficient technique to derive solutions [32–35]. For second order 
ODEs [24,29,32], there are fifty equations with this property, and then, 
our goal is to transform Eq. (1.3) into one these canonical equations. 
This procedure provides the more general ODE of the form (1.3) which 
is integrable in the Painlevé sense, leading eventually, to its solutions.

It is worth remarking that the extended Eq. (1.3) constitutes a broad 
generalization of the Duffing–van der Pol oscillator that has not been 
studied previously. The novelty of our research lies in the combination 
of both approaches to study and successfully provide the exact solution 
for the integrable version of Eq. (1.3). The benefits of this synergy have 
already been highlighted in some previous works [36,37]. We propose 
a novel ansatz in terms of an arbitrary function 𝑓 (𝑡) to prescribe a 
noncommutative factorization that allows us to solve the problem and 
find the associated solutions. From Painlevé’s analysis point of view, the 
function 𝑓 (𝑡) arises naturally. In addition to provide the same solution 
for Eq. (1.3), this framework also allows us to construct an ideal setting 
where the derivation of a Lagrangian is immediate through the Jacobi 
Last Multiplier method [38–41].

This paper is organized as follows. In Section 2, a factorization 
scheme for nonlinear second order ODEs with variable coefficients, the 
fundamentals of the Field Method, and an approach combining both 
methods, are presented. The general and particular solutions for the 
DVDP Eq. (1.3) are obtained via the factorization scheme in Section 3. 
In Section 4, the application of Painlevé’s integrability techniques is 
employed so as to find the integrable form of a nonlinear ODE of 
type (1.3), and derive its general solution. Section 5 is devoted to the 
Lagrangian formalism for (1.3). In Section 6, three examples of interest 
for some specific time-dependent coefficients are shown. Finally, in 
Section 7 the main conclusions are highlighted.

2. Factorization of second order nonlinear differential equations 
and the ‘‘Field Method’’

Let us consider an even more general ODE than (1.3), namely the 
following nonlinear equation with variable coefficients 
�̈� + 𝐹 (𝑥, 𝑡)�̇� + 𝐺(𝑥, 𝑡) = 0, (2.1)

where 𝐺(𝑥, 𝑡) and 𝐹 (𝑥, 𝑡) are arbitrary functions of the space and time 
variables (𝑥, 𝑡), respectively.
2 
Let us first assume that this equation can be factored in the form 

[𝑡 − 𝜙2(𝑥, 𝑡)][𝑡 − 𝜙1(𝑥, 𝑡)]𝑥 = 0, 𝑡 ∶= �̇� 𝜕
𝜕𝑥

+ 𝜕
𝜕𝑡
, (2.2)

then, the following conditions [13–15] must be met:

𝜙1(𝑥, 𝑡) + 𝜙2(𝑥, 𝑡) +
𝜕𝜙1
𝜕𝑥

𝑥 = −𝐹 (𝑥, 𝑡), (2.3)

𝜙1(𝑥, 𝑡)𝜙2(𝑥, 𝑡) −
𝜕𝜙1
𝜕𝑡

=
𝐺(𝑥, 𝑡)

𝑥
. (2.4)

If now we define [𝑡 − 𝜙1(𝑥, 𝑡)]𝑥 = 𝛷(𝑥, 𝑡), this yields the following 
coupled system of ODEs for the factored Eq. (2.2),

�̇� − 𝜙1(𝑥, 𝑡) 𝑥 = 𝛷(𝑥, 𝑡), (2.5)
�̇�(𝑥, 𝑡) − 𝜙2(𝑥, 𝑡)𝛷(𝑥, 𝑡) = 0, (2.6)

where 
�̇� ≡ 𝑡𝛷 = 𝜕𝛷

𝜕𝑡
+ 𝜕𝛷

𝜕𝑥
�̇�. (2.7)

To find the analytical solution of this system of ODEs, we are going to 
resort the so-called ‘‘Field Method’’ (FM), developed by Vujanović [19,
20], (see also [21,22,42]). The FM establishes that for a holonomic, 
nonconservative dynamical system described in the form 
�̇�𝑗 (𝑡) = 𝑋𝑗 (𝑡, 𝑥1,… , 𝑥𝑛), 𝑗 = 1,… , 𝑛, (2.8)

one state variable can be chosen to be a field depending on time 𝑡 and 
the rest of the variables as 
𝑥1 = 𝛷(𝑡, 𝑥2,… , 𝑥𝑛). (2.9)

Obtaining the total derivative with respect to time of (2.9), and com-
bining it with the last 𝑛 − 1 elements of (2.8), we can write the basic 
field equation as 
𝜕𝛷
𝜕𝑡

+
𝑛
∑

𝑗=2

𝜕𝛷
𝜕𝑥𝑗

𝑋𝑗 (𝑡, 𝛷, 𝑥2,… , 𝑥𝑛) −𝑋1(𝑡, 𝛷, 𝑥2,… , 𝑥𝑛) = 0, (2.10)

whose complete solution is of the form 
𝑥1 = (𝑡, 𝑥2,… , 𝑥𝑛,), (2.11)

where  is an arbitrary constant. Then, given (2.11), the solution of 
Eq. (2.1) follows from the system of ODEs (2.5)–(2.6).

With the aid of (2.7), we start by rewriting the system of Eqs. (2.5)–
(2.6) as the following quasilinear first order partial differential equation 
for 𝛷: 
𝜕𝛷
𝜕𝑡

+ 𝜕𝛷
𝜕𝑥

(

𝛷 + 𝑥𝜙1
)

− 𝜙2 𝛷 = 0. (2.12)

As a second step, and following the prescription of previous works 
on the topic [11,19–22], we now look for a complete solution of the 
above equation in the form 
𝛷(𝑥, 𝑡) = 𝜁 (𝑡) 𝑥, (2.13)

where 𝜁 (𝑡) is an unknown function of time. Then, by substituting this 
ansatz in (2.12), we get 
𝑑𝜁 (𝑡)
𝑑𝑡

+ 𝜁2(𝑡) − (𝜙2 − 𝜙1)𝜁 (𝑡) = 0, (2.14)

which necessarily implies the following relation for 𝜙1(𝑥, 𝑡) and 𝜙2(𝑥, 𝑡)

𝜙2(𝑥, 𝑡) = 𝜙1(𝑥, 𝑡) + 𝑓 (𝑡), (2.15)

with 𝑓 (𝑡) an arbitrary function of time, as long as 𝜁 (𝑡) ≠ 0.
The so-called commutative factorization arises when 𝑓 (𝑡) is a con-

stant, and then the factorization operators in (2.2) can be reversed [26]. 
This factorization scheme, when combined with the FM approach, al-
lows to solve important nonlinear ODEs with constant coefficients [11]. 
Nevertheless, in this work, we will consider the general setting where 
(2.15) holds for an arbitrary 𝑓 (𝑡). The implementation of the general 
noncommutative factorization and the FM as a technique to deal with 
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differential equations with variable coefficients has not been previously 
applied.

The relation (2.15) allow us now to compute 𝜙1(𝑥, 𝑡) and 𝜙2(𝑥, 𝑡) by 
integrating the system (2.3)–(2.4) in terms of 𝑓 (𝑡), once the functions 
𝐹 (𝑥, 𝑡) and 𝐺(𝑥, 𝑡) are explicitly given.  By substituting (2.15) into 
Eq. (2.3) we get for the factoring functions

𝜙1(𝑥, 𝑡) =
1
𝑥2

[ℎ(𝑡) − 𝐼(𝑥, 𝑡)] − 1
2
𝑓 (𝑡), (2.16)

𝜙2(𝑥, 𝑡) =
1
𝑥2

[ℎ(𝑡) − 𝐼(𝑥, 𝑡)] + 1
2
𝑓 (𝑡), (2.17)

where 𝐼(𝑥, 𝑡) = ∫ 𝑥 �̃�𝐹 (�̃�, 𝑡)𝑑�̃�, and ℎ(𝑡) is an arbitrary function of time 
obtained through integration of Eq. (2.3). Now, by substituting (2.16) 
and (2.17) into Eq. (2.4), we get for the variable coefficients entering 
the Eq. (2.1) the relation 

𝐺(𝑥, 𝑡) = 1
𝑥3

[ℎ(𝑡) − 𝐼(𝑥, 𝑡)]2 −
ℎ′(𝑡)
𝑥

+ 1
2

[

𝑓 ′(𝑡) −
𝑓 2(𝑡)
2

]

𝑥 + 1
𝑥
𝜕𝐼(𝑥, 𝑡)

𝜕𝑡
.

(2.18)

This equation provides the most general relation between 𝐹 (𝑥, 𝑡) and 
𝐺(𝑥, 𝑡) which allows the factorization of Eq. (2.1) as presented in 
Eq. (2.2).

Furthermore, Eq. (2.14) therefore provides the following Riccati 
equation for 𝜁 (𝑡)
𝑑𝜁 (𝑡)
𝑑𝑡

+ 𝜁2(𝑡) − 𝑓 (𝑡)𝜁 (𝑡) = 0, (2.19)

which can be easily integrated as 

𝜁 (𝑡) = 𝑒∫
𝑡 𝑑𝑡1 𝑓 (𝑡1)

𝑘1 + ∫ 𝑡 𝑑𝑡2
[

𝑒∫
𝑡2 𝑑𝑡1 𝑓 (𝑡1)

] = 𝑑
𝑑𝑡

ln
(

𝑘1 + ∫

𝑡
𝑑𝑡2

[

𝑒∫
𝑡2 𝑑𝑡1 𝑓 (𝑡1)

]

)

,

(2.20)

in terms of an integration constant 𝑘1. This last result allows us to find 
𝛷(𝑥, 𝑡) explicitly using (2.13), and consequently the first order ODE 
(2.5) can be written in the form 
�̇� − 𝜙1(𝑥, 𝑡) 𝑥 = 𝜁 (𝑡) 𝑥, (2.21)

whose integration provides the general solution 𝑥(𝑡) for Eq. (2.1) ad-
mitting a factored expression in the form proposed in (2.2).

We should study separately the case where 𝛷(𝑥, 𝑡) = 0, which 
provides a particular solution for Eq. (2.1). Taking the expression for 
𝜙1(𝑥, 𝑡) obtained in the general case, this particular solution is given 
now by the compatible equation arising from (2.5)

�̇� − 𝜙1(𝑥, 𝑡) 𝑥 = 0. (2.22)

In the next section we will consider a more specific example of 
an equation of type (2.1) in which the functions 𝐹 (𝑥, 𝑡) and 𝐺(𝑥, 𝑡)
have a relatively simple polynomial dependence on the variable 𝑥, with 
variable coefficients of time.

3. Factorization of an extended Duffing–van der Pol equation with 
variable coefficients

Let us now consider the DVDP equation as in (1.3), 

�̈� +
[

𝐴(𝑡)𝑥2 + 𝐵(𝑡)
]

�̇� + 𝐶(𝑡)𝑥 +𝐷(𝑡)𝑥3 + 𝐸(𝑡)𝑥5 = 0, (3.1)

where, as already indicated, 𝐴(𝑡) ≠ 0, 𝐸(𝑡) ≠ 0, and 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) are 
certain smooth functions of time 𝑡, which are in principle assumed to 
be known. The polynomial dependence on 𝑥 of the functions 𝐺(𝑥, 𝑡)
and 𝐹 (𝑥, 𝑡) is not arbitrary: it has been chosen based on physical 
applications and interesting mathematical properties [6–10]. Let us 
proceed with the factorization scheme introduced in Section 2 to solve 
(3.1).
3 
3.1. General solution

Since 𝜙2(𝑥, 𝑡) = 𝜙1(𝑥, 𝑡) +𝑓 (𝑡), Eq. (3.1) can be factored according to 
(2.2) as follows 
[𝑡 − (𝜙1(𝑥, 𝑡) + 𝑓 (𝑡))] [𝑡 − 𝜙1(𝑥, 𝑡)] 𝑥 = 0, (3.2)

and then the following conditions (2.3)–(2.4) are met

2𝜙1(𝑥, 𝑡) + 𝑓 (𝑡) +
𝜕𝜙1(𝑥, 𝑡)

𝜕𝑥
𝑥 = −

[

𝐴(𝑡) 𝑥2 + 𝐵(𝑡)
]

, (3.3)

𝜙2
1(𝑥, 𝑡) + 𝜙1(𝑥, 𝑡)𝑓 (𝑡) −

𝜕𝜙1(𝑥, 𝑡)
𝜕𝑡

= 𝐶(𝑡) +𝐷(𝑡) 𝑥2 + 𝐸(𝑡) 𝑥4. (3.4)

The system above can be straightforwardly integrated, yielding and 
expression for 𝜙1 of the form 

𝜙1(𝑥, 𝑡) = −
𝐴(𝑡)
4

𝑥2 −
𝐵(𝑡) + 𝑓 (𝑡)

2
, (3.5)

and the following relations for the coefficients 

𝐸(𝑡) =
𝐴2(𝑡)
16

, 𝐷(𝑡) = 1
4
(𝐴(𝑡)𝐵(𝑡) + �̇�(𝑡)), (3.6)

and 

𝐶(𝑡) =
�̇�(𝑡)
2

+
𝐵2(𝑡)
4

+
̇𝑓 (𝑡)
2

−
𝑓 2(𝑡)
4

. (3.7)

These results imply that three of the five time-dependent coefficients 
in (3.1) actually depend on the other two. These last expressions can 
be interpreted in two different ways. One is that if in addition to 
𝐴(𝑡) and 𝐵(𝑡) we know the function 𝑓 (𝑡), then the coefficient 𝐶(𝑡) is 
univocally fixed. Another is that if what is known from the input is 
the coefficient 𝐶(𝑡), the previous expression is a Riccati equation which 
may determine the possible functions 𝑓 (𝑡) that allow us to solve the 
problem by factorization.

In summary, we can say that with the hypotheses used so far, 
the most general form of Eq.  (3.1) compatible with the factorization 
proposed is the following 

�̈�+
[

𝐴𝑥2 + 𝐵
]

�̇�+
(

�̇�
2
+ 𝐵2

4
+

̇𝑓
2
−

𝑓 2

4

)

𝑥+1
4
(𝐴𝐵+�̇�)𝑥3+𝐴2

16
𝑥5 = 0, (3.8)

which admits the decomposition 
[

𝑡 +
𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) − 𝑓 (𝑡)

2

] [

𝑡 +
𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

2

]

𝑥 = 0. (3.9)

If we now assume that solutions of the basic field Eq. (2.12) are factored 
as in (2.13), then, according to Eq. (2.21), we obtain the following 
compatible first order nonlinear ODE for 𝑥(𝑡)

�̇� +
𝑅(𝑡)
2

𝑥 +
𝐴(𝑡)
4

𝑥3 = 0, (3.10)

where we have defined 
𝑅(𝑡) = 𝐵(𝑡) + 𝑓 (𝑡) − 2𝜁 (𝑡), (3.11)

and 𝜁 (𝑡) is given by (2.20) in terms of an arbitrary constant 𝑘1. The 
general solution of the Bernoulli Eq. (3.10) is also the general solution 
of (3.8), given in the form 

𝑥(𝑡) = ±

√

2 𝑒−
1
2 ∫ 𝑡 𝑑𝑡1 𝑅(𝑡1)

√

𝑘2 + ∫ 𝑡 𝑑𝑡2 𝐴(𝑡2)
[

𝑒− ∫ 𝑡2 𝑑𝑡1 𝑅(𝑡1)
]

, (3.12)

which depends on two arbitrary constants 𝑘1 (which is inside 𝑅(𝑡)) and 
𝑘2.

3.2. Particular solution

We shall study now the particular solution arising from the choice 
𝛷(𝑥, 𝑡) = 0 in (2.5). This is equivalent to consider 
[

𝑡 +
𝐴(𝑡)

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

]

𝑥 = 0, (3.13)

4 2
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in (3.9), which leads to the following differential equation 

�̇� +
𝐵(𝑡) + 𝑓 (𝑡)

2
𝑥 +

𝐴(𝑡)
4

𝑥3 = 0, (3.14)

whose solution is given by 

𝑥(𝑡) = ±

√

2 𝑒−
1
2 ∫ 𝑡 𝑑𝑡1

(

𝐵(𝑡1)+𝑓 (𝑡1)
)

√

𝑘3 + ∫ 𝑡 𝑑𝑡2 𝐴(𝑡2)
[

𝑒− ∫ 𝑡2 𝑑𝑡1
(

𝐵(𝑡1)+𝑓 (𝑡1)
)
]

, (3.15)

where 𝑘3 is the constant of integration.
Particular solutions are obtained by solving the first order compat-

ible ODE �̇� − 𝜙1(𝑥, 𝑡)𝑥 = 0, where 𝜙1(𝑥, 𝑡) must be a general solution of 
(2.3). We have considered the same solution for 𝜙1(𝑥, 𝑡) as in the general 
case, given in (3.5), which follows from the integration of (3.3)–(3.4). It 
is worth noticing that this system of PDEs has been solved by imposing 
𝜙2 = 𝜙1 + 𝑓 (𝑡), which is a consequence of the ansatz 𝛷 = 𝜁 (𝑡)𝑥, but no 
longer holds if 𝛷 = 0. Nevertheless, for the sake of simplicity and in 
order to be able to compare both sets of solutions, we have imposed 
this ansatz as well in this case. Hence, solution (3.15) can be found as 
the particular case where 𝜁 (𝑡) = 0 in the general procedure described 
previously.

3.3. Remarks on the noncommutative factorization

To end this section, and as done in [13], note that if the order of 
the brackets is reversed in the factorization of Eq.  (3.9), we arrive at 
[

𝑡 +
𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

2

] [

𝑡 +
𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) − 𝑓 (𝑡)

2

]

𝑥 = 0, (3.16)

which is a nonlinear ODE of the same type as (3.8)

�̈� +
[

𝐴𝑥2 + 𝐵
]

�̇� +
(

�̇�
2
+ 𝐵2

4
−

̇𝑓
2
−

𝑓 2

4

)

𝑥 + 1
4
(𝐴𝐵 + �̇�)𝑥3 + 𝐴2

16
𝑥5 = 0,

(3.17)

where the only difference with (3.8) is in the coefficient 𝐶(𝑡) through 
the sign of ̇𝑓 . Thus, the commutative factorization exclusively arises for 
𝑓 (𝑡) constant. Besides, the sole effect of the noncommutativity of the 
operators in the factorization is the change 𝑓 → −𝑓 in the equation, 
and therefore in its solutions.

4. Painlevé’s approach

In the previous section we have analysed the more general second 
order ODE of the nonlinear oscillatory type of the form (3.1) under 
the factorization technique with reasonable hypothesis. This led us 
to some restrictions on the values of some of the coefficients of the 
aforementioned ODE, which becomes (3.8). In the present section we 
take a different perspective. We use Painlevé’s ideas in order to look 
for the more general ODE of the form (3.1) that is integrable in the 
Painlevé sense. This will impose again restrictions over the coefficients, 
and eventually lead to a solution of the differential equation.

Painlevé, Gambier et al. [24,28,29] addressed the classification of 
second order ODEs based on the singularities of their solutions in the 
complex plane. These authors studied differential equations of the form
�̈� =  (𝑡, 𝑥, �̇�) ,

where  is a rational function in �̇�, algebraic in 𝑥 and locally analytic 
in 𝑡. Painlevé found that there were fifty canonical equations of this 
form with the property that their critical points are fixed singularities. 
Forty-four of these equations may be integrated in terms of elemen-
tary functions, by quadratures or by linearization. The remaining six 
equations require the introductions of new trascendental functions, the 
Painlevé transcendents [32,43]. These results allowed to introduce the 
concept of the ‘‘Painlevé Property’’ as the following: an ODE has the 
Painlevé Property if all the movable singularities of its solutions are 
ordinary poles. The Painlevé Property can therefore be used as an 
integrability criterion. If a second order ODE has the Painlevé Property, 
then it will be integrable in the sense specified before, regardless if we 
are able to find a explicit solution.
4 
4.1. Canonical classification

We aim now at classifying our model (3.1) as one of those 50 
canonical equations established by Painlevé, which have the Painlevé 
Property by construction. In order to do that, and as prescribed in [24,
29,32], we introduce the general scale-like transformation 
𝑥2(𝑡) = 𝜆2(𝑡)𝑊 (𝑍), 𝑍 = 𝜑(𝑡), (4.1)

where from now on 𝑍 is the new independent variable, 𝑊 (𝑍) is the 
new dependent variable, and the derivatives with respect to 𝑍 are 
denoted as ′ ≡ 𝑑

𝑑𝑍 . The functions 𝜆(𝑡) and 𝜑(𝑡) are assumed to be smooth 
and non-zero, and �̇�(𝑡) ≠ 0. By substituting this transformation in (3.1), 
we get 

𝑊 ′′ = 𝑊 ′2

2𝑊
− 𝜆2𝐴

�̇�
𝑊 𝑊 ′ − 2𝜆4𝐸

�̇�2
𝑊 3 − 2𝜆2

�̇�2

[

𝐷 + 𝐴 �̇�
𝜆

]

𝑊 2

− 1
�̇�

(

𝐵 +
�̈�
�̇�

+ 2�̇�
𝜆

)

𝑊 ′ − 2
�̇�2

[

𝐶 + 𝐵 �̇�
𝜆
+ �̈�

𝜆

]

𝑊 .
(4.2)

If we compare this result with Painlevé’s canonical classification [32], 
Eq. (4.2) falls under Type III, and we find that the only possible 
canonical equation is Eq. XXIV, also known as PXXIV, of the form 

𝑊 ′′ = 𝑚 − 1
𝑚

𝑊 ′2

𝑊
+ 𝑞(𝑍)𝑊𝑊 ′ −

𝑚𝑞2(𝑍)
(𝑚 + 2)2

𝑊 3 +
𝑚𝑞′(𝑍)
𝑚 + 2

𝑊 2, (4.3)

where 𝑞(𝑍) is an arbitrary function of 𝑍 and 𝑚 > 1 is an integer. By 
comparing the terms in 𝑊 ′ and the different powers of 𝑊  in both (4.2) 
and (4.3), we find that the following conditions need to be met:

(a) The value of the integer 𝑚 is trivially 𝑚 = 2.
(b) The arbitrary function 𝑞(𝑍) turns out to be 

𝑞(𝑍) = −
𝜆2(𝑡)𝐴(𝑡)

�̇�(𝑡)
. (4.4)

(c) Coefficients 𝐸(𝑡) and 𝐷(𝑡) are identically fixed in terms of 𝐴(𝑡), 
𝐵(𝑡) as 

𝐸(𝑡) =
𝐴2(𝑡)
16

, 𝐷(𝑡) = 1
4
(

𝐴(𝑡)𝐵(𝑡) + �̇�(𝑡)
)

. (4.5)

(d) The functions 𝜆(𝑡) and 𝜑(𝑡) are not independent, but they are 
related through the expression 

𝐵 +
�̈�
�̇�

+ 2�̇�
𝜆

= 0. (4.6)

Moreover, they must satisfy the following differential equations 
in terms on 𝐵(𝑡) and 𝐶(𝑡), 

�̈�+𝐵�̇�+𝐶𝜆 = 0, 𝑑
𝑑𝑡

(

�̈�
�̇�

)

− 1
2

(

�̈�
�̇�

)2
+ 𝐵2

2
+�̇�−2𝐶 = 0, (4.7)

which are consistent with condition (4.6).

These results indicate that once the coefficients 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡) are 
known, the most general second order ODE of the form (3.1) that is 
integrable in the Painlevé sense is 

�̈� +
[

𝐴𝑥2 + 𝐵
]

�̇� + 𝐶𝑥 + 1
4
(𝐴𝐵 + �̇�)𝑥3 + 𝐴2

16
𝑥5 = 0, (4.8)

where coefficient 𝐵(𝑡) and 𝐶(𝑡) are no longer independent, since
Eqs. (4.6) and (4.7) must be also satisfied.

We surprisingly find that this result fully coincides with the one 
obtained in (3.8) using the factorization method. This equivalence 
straightforwardly holds if we define 

𝑓 (𝑡) =
�̈�
�̇�
, (4.9)

and then, the scale functions 𝜆(𝑡) and 𝜑(𝑡) are now expressed as 

𝑍 = 𝜑(𝑡) =
𝑡
𝑑𝑡2 𝑒

∫ 𝑡2 𝑓 (𝑡1) 𝑑𝑡1 , 𝜆2(𝑡) = 𝑒− ∫ 𝑡(𝐵(𝑡1)+𝑓 (𝑡1)
)

𝑑𝑡1 . (4.10)
∫
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Hence, under these identifications, Eq. (4.8) becomes (3.8), and we 
conclude that Painlevé integrability for equations of the form (3.1) 
implies factorization.

Indeed, this factorization property can be extended to any nonlinear 
differential equation reducible to the canonical equation PXXIV after a 
scale transformation [32], since it can be easily proven that Eq.  (4.3) 
also admits the commutative factorization 
[

𝑍 −
𝑞(𝑍)𝑊
𝑚 + 2

]2
𝑊

1
𝑚 = 0, 𝑍 ∶= 𝑊 ′ 𝜕

𝜕𝑊
+ 𝜕

𝜕𝑍
, (4.11)

for any arbitrary function 𝑞(𝑍) and integer 𝑚. The factorization scheme 
above is given in terms of 𝑊 1

𝑚 , which accounts for the nonlinear 
contribution in 𝑊 ′2 in PXXIV (4.3) (cf. [27]). Such modification arises 
naturally from the inversion of the scale-like transformation (4.1).

4.2. Solutions via PXXIV

According to [24,29,32], Eq. (4.3) may be rewritten as the following 
system of first order ODEs, 

𝑊 ′ = 𝑚𝑊 𝑌 +
𝑚𝑞(𝑍)
𝑚 + 2

𝑊 2, 𝑌 ′ = −𝑌 2, (4.12)

where we have introduced the new dependent variable 𝑌 (𝑍). It is worth 
noticing that this way of expressing (4.3) is not arbitrary, since it is 
closely related to the factorization for PXXIV. If we define the action of 
the first operator in (4.11) as
[

𝑍 −
𝑞(𝑍)𝑊
𝑚 + 2

]

𝑊
1
𝑚 = 𝑌𝑊

1
𝑚 ,

then Eq. (4.11) trivially leads to (4.12). The system (4.12) comprises 
two Riccati equations for 𝑊  and 𝑌 , which can be easily integrated by 
quadratures, yielding the well-known solution for PXXIV [32] as 

𝑊 (𝑍) = −𝑚 + 2
𝑚

(

𝐶1𝑍 + 𝐶2
)𝑚

𝐶3 + ∫ 𝑍 (

𝐶1𝑍1 + 𝐶2
)𝑚 𝑞(𝑍1) 𝑑𝑍1

. (4.13)

where 𝐶1, 𝐶2, 𝐶3 are constants of integration, discussed in detail below.
We may now undo the scale-like transformation (4.1) to retrieve the 

solution 𝑥(𝑡) for (3.1), yielding 

𝑥(𝑡) = ±

√

2
(

𝐶1𝜑(𝑡) + 𝐶2
)

𝑒−
1
2 ∫ 𝑡 𝑑𝑡1𝐵(𝑡1)

√

�̇�(𝑡)
(

𝐶3 + ∫

𝑡
𝑑𝑡1

(

𝐶1𝜑(𝑡1) + 𝐶2
)2 𝐴(𝑡1)

�̇�(𝑡1)
𝑒− ∫ 𝑡1 𝑑𝑡2𝐵(𝑡2)

)

,

(4.14)

where 𝜑(𝑡) follows from (4.7).
Solution (4.14) may seem to depend on upon three arbitrary con-

stants 𝐶1, 𝐶2, 𝐶3. Nevertheless, there are only two relevant constants 
of integration. In order to obtain nontrivial solutions for 𝑥(𝑡), 𝐶1 and 
𝐶2 cannot vanish simultaneously. Hence, two different cases arise: 
𝐶1 ≠ 0 and 𝐶1 = 0. A proper rescaling of the remaining constants and 
the identification between 𝑓 (𝑡) and 𝜑(𝑡) through (4.9) straightforward 
yields the solutions obtained through the factorization method (3.12) 
and (3.15), respectively.

5. Lagrangian formalism

As it is well known, the formulation of Classical Mechanics in terms 
of variational principles has proven to be extremely advantageous. It 
is well established that a standard prescription for the Lagrangian as 
 = 𝑇 − 𝑉 , where 𝑇  is a quadratic kinetic term and 𝑉  is a potential 
function, mainly works for conservative systems or for specific velocity-
dependent forces. Many classical systems exist that do not fall into 
these categories, such as Liénard-type nonlinear oscillators, but this 
does not mean that they lack a variational formulation. Nevertheless, 
the solution to the inverse problem is neither a straightforward nor 
trivial task. Helmholtz conditions [44,45], when satisfied, guarantee 
5 
the existence of a Lagrangian function that gives rise to a given system 
of ODEs through the Euler–Lagrange equations. Besides, there may 
exist different (and non-gauge equivalent) Lagrangians for a given 
system [46–48]. The one-dimensional case (a second order ODE with 
one generalized coordinate) was first addressed by Darboux [49], and 
he found that any second order ODE can be derived from a varia-
tional problem. Indeed, there exists infinite (typically) non-standard 
Lagrangians that will yield the desired equation. For this case, Darboux 
also presented a way to construct the Lagrangian, which reduces to the 
determination of a function satisfying a differential equation, which 
turns out to be a Jacobi Last Multiplier (JLM), a concept introduced 
by Jacobi in the XIX century [38–40]. Techniques based on the JLM 
have proved to retrieve a plethora of remarkably fruitful results when 
it comes to obtain Lagrangians, either for one-dimensional differential 
equations [50–52] or multidimensional systems [53–55].

In this section, we revisit the method of the JLM, focusing on its ap-
plication to solve the inverse problem. We aim at finding a Lagrangian 
for equations admitting a factorization scheme as in (3.8), which as 
we have proven, can also be transformed in an ODE with the Painlevé 
Property (4.3). Actually, we will start from the Painlevé equation 
PXXIV, and obtain a Lagrangian by means of the JLM approach for it. 
Then, the Lagrangian for (3.8) arises naturally using the properties of 
the multiplier.

5.1. The Jacobi last multiplier revisited

Let us illustrate Jacobi’s Last Multiplier method [38–40], first de-
veloped as an alternative procedure to derive solutions to mechanical 
systems that can be reduced to a system of first order differential equa-
tions. Let us consider a set of 𝑛 first order non-autonomous differential 
equations written in the form 

�̇�𝑗 (𝑡) = 𝑋𝑗 (𝑡, 𝑥1,… , 𝑥𝑛), 𝑗 = 1,… , 𝑛, (5.1)

where the vector fields (𝑋1,… , 𝑋𝑛) are functions of the 𝑛 + 1 variables 
(𝑡, 𝑥1,… 𝑥𝑛). The system above (5.1) may be easily rewritten as the 
Lagrange system 

𝑑𝑡 =
𝑑𝑥1
𝑋1

= ⋯ =
𝑑𝑥𝑛
𝑋𝑛

. (5.2)

A function 𝑀 = 𝑀(𝑡, 𝑥1,… 𝑥𝑛) is a Jacobi Last Multiplier of the system 
(5.2) if it satisfies the following differential equation 

𝜕𝑀
𝜕𝑡

+
𝑛
∑

𝑗=1

𝜕
(

𝑀𝑋𝑗
)

𝜕𝑥𝑗
= 0, (5.3)

or equivalently, 

𝑑
𝑑𝑡

log𝑀 +
𝑛
∑

𝑗=1

𝜕𝑋𝑗

𝜕𝑥𝑗
= 0, (5.4)

if we take the dynamical system (5.1) into account.
Essentially, the JLM formalism states that if 𝑛 − 1 first integrals 

are known, the existence of a last multiplier trivially yields an ex-
tra first integral through a quadrature, where the integrating factor 
depends precisely on the last multiplier [41]. The JLM possesses sev-
eral properties [38–40], it is closely related to first integrals and Lie 
symmetries [56,57], and it has turned out to be extremely convenient 
when dealing with Hamiltonian dynamical systems [41]. Of particular 
interest is the connection between the JLM and the Lagrangian function 
for second order differential equations.

Any second order ODE of the form 

�̈� = 𝜙(𝑡, 𝑥, �̇�), (5.5)

can be alternatively written as the system 

𝑑𝑡 = 𝑑𝑥 = 𝑑�̇� . (5.6)

�̇� 𝜙(𝑡, 𝑥, �̇�)
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Then, it can be proven [41] that a Lagrangian (𝑡, 𝑥, �̇�) for (5.5) can be 
obtained from the JLM for (5.6) as 

𝑀(𝑡, 𝑥, �̇�) = 𝜕2
𝜕�̇�2

, (5.7)

since, after this condition, the associated Euler–Lagrange equation
𝑑
𝑑𝑡

( 𝜕
𝜕�̇�

)

− 𝜕
𝜕𝑥

= 0

becomes 
𝑑
𝑑𝑡

log𝑀 +
𝜕𝜙
𝜕�̇�

= 0, (5.8)

which is precisely the equation for the Jacobi Last Multiplier of system 
(5.6).

Hence, a Lagrangian for (5.5) can always be obtained from 𝑀(𝑡, 𝑥, �̇�)
[41] as 

(𝑡, 𝑥, �̇�) = ∫

�̇� (

∫

�̇�1
𝑀(𝑡, 𝑥, �̇�2) 𝑑�̇�2

)

𝑑�̇�1 +(𝑡, 𝑥) +
𝑑(𝑡, 𝑥)

𝑑𝑡
, (5.9)

where (𝑡, 𝑥) is the usual gauge function and (𝑡, 𝑥) is a function to 
be determined by imposing that the Euler–Lagrange equation for (5.9) 
retrieves (5.5).

Then, the determination of the Lagrangian for a second order ODE 
reduces to the determination of the JLM for such equation.

5.2. Non-standard Lagrangians for PXXIV and the extended Duffing–van 
der Pol equation with variable coefficients

Let us start rewriting PXXIV (4.3) as in (4.12),

𝑊 ′ = 𝑚𝑊 𝑌 +
𝑚𝑞(𝑍)
𝑚 + 2

𝑊 2, 𝑌 ′ = −𝑌 2.

The JLM 𝑀(𝑍,𝑊 , 𝑌 ) for this system arises from (5.4), and must 
therefore satisfy 
𝑑
𝑑𝑍

log𝑀 + 𝑚𝑌 +
2𝑚𝑞(𝑍)𝑊

𝑚 + 2
− 2𝑌 = 0. (5.10)

If we assume that 𝑀(𝑍,𝑊 , 𝑌 ) is separable in the following form 
𝑀(𝑍,𝑊 , 𝑌 ) = 𝜇(𝑍)𝑊 𝛼𝑌 𝛽 , (5.11)

where 𝛼, 𝛽, 𝜇(𝑍) are parameters to be determined, then, substitution 
into Eq. (5.10), we get 

𝛼 = −2, 𝛽 = −𝑚 − 2,
𝑑𝜇
𝑑𝑍

= 0. (5.12)

Hence, 
𝑀(𝑍,𝑊 , 𝑌 ) = 𝑊 −2𝑌 −𝑚−2 (5.13)

constitutes a JLM for the system (4.12), where  is a trivial scaling 
constant that plays no role in the dynamics of the system.

It can be easily proven [41] that if we perform a change of variables 
(𝑥1,… , 𝑥𝑛) → (�̃�1,… , �̃�𝑛) in (5.1), the last multiplier �̃�(𝑡, �̃�1,… , �̃�𝑛) for 
the transformed system is given by 
�̃�(𝑡, �̃�1,… , �̃�𝑛) = 𝑀(𝑡, 𝑥1,… , 𝑥𝑛)𝛥, (5.14)

where 𝛥 is the Jacobian of transformation 𝛥 = 𝜕(𝑥1 ,…,𝑥𝑛)
𝜕(�̃�1 ,…,�̃�𝑛)

.
Then, as done in [54], we can straightforwardly compute the La-

grangian for PXXIV by considering the change of variables (𝑊 ,𝑌 ) →
(𝑊 ,𝑊 ′) in (4.12), giving rise to the following last multiplier 

�̃�(𝑍,𝑊 ,𝑊 ′) =
𝑀(𝑍,𝑊 , 𝑌 )

𝑚𝑊
= ̃𝑊 𝑚−1

(

𝑊 ′ −
𝑚𝑞(𝑍)𝑊 2

𝑚 + 2

)−𝑚−2

,

(5.15)

where ̃ = 𝑚𝑚+1. The multiplier above now satisfies 
𝑑
𝑑𝑍

log �̃� +
2(𝑚 − 1)

𝑚
𝑊 ′

𝑊
+ 𝑞(𝑍)𝑊 = 0, (5.16)

which is the equation for the JLM associated to (4.3).
6 
Hence, a Lagrangian for PXXIV (4.3) can be directly obtained by 
performing a double integration as in (5.9), giving rise to 

(𝑍,𝑊 ,𝑊 ′) = 𝑊 𝑚−1
(

𝑊 ′ −
𝑚𝑞(𝑍)𝑊 2

𝑚 + 2

)−𝑚

+
𝑑(𝑍,𝑊 )

𝑑𝑍
, (5.17)

where we have identified ̃ = 𝑚(𝑚 + 1) for simplicity, (𝑍,𝑊 ) = 0, 
and (𝑍,𝑊 ) is the gauge function, which can be set to zero without 
loss of generality. It is easy to check that the Euler–Lagrange equations 
for (5.17) retrieves (4.3). Lagrangians for Painlevé-type equations via 
the JLM have been previously studied in literature [58,59], but up to 
our knowledge so far, the obtention of a Lagrangian for PXXIV is a new 
result.

Finding now a Lagrangian for the DVDP equation of the form (3.8) 
is immediate by means of the change of variables rule (5.14) for the 
multipliers when applied to the transformation (4.1). Then, a JLM for 
(3.8) is given by 

�̃�(𝑡, 𝑥, �̇�) = �̃�(𝑍,𝑊 ,𝑊 ′)
𝜕(𝑊 ,𝑊 ′)
𝜕(𝑥, �̇�)

= 4𝑥2𝑒∫
𝑡 (2𝐵(𝑡1)+𝑓 (𝑡1)𝑑𝑡1�̃�(𝑍,𝑊 ,𝑊 ′)

= 3
2
𝑒∫

𝑡(2𝑓 (𝑡1)−𝐵(𝑡1))𝑑𝑡1
[

�̇� +
(

𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

2

)

𝑥
]−4

,

(5.18)

And finally, a Lagrangian for (3.8) arises from (5.9) as 

(𝑡, 𝑥, �̇�) = 1
4
𝑒∫

𝑡(2𝑓 (𝑡1)−𝐵(𝑡1))𝑑𝑡1
[

�̇� +
(

𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

2

)

𝑥
]−2

. (5.19)

It is worth mentioning the role of the factorization scheme in the 
derivation of the Lagrangian. A factorization of the form (3.9) allows 
us to rewrite the original ODE (3.8) as a system of two first order ODEs 
of Riccati-type, 

�̇� = 𝑦𝑥 −
(

𝐴(𝑡)
4

𝑥2 +
𝐵(𝑡) + 𝑓 (𝑡)

2

)

𝑥, �̇� = 𝑓 (𝑡)𝑦 − 𝑦2, (5.20)

where we have introduced the new dependent variable 𝑦(𝑡) as 𝑦𝑥 =
[

𝑡 − 𝜙1(𝑥, 𝑡)
]

𝑥. The system above has a JLM of the form 𝑁(𝑡, 𝑥, 𝑦) =
𝑒∫

𝑡(2𝑓 (𝑡1)−𝐵(𝑡1))𝑑𝑡1𝑥−3𝑦−4, whose integration provides, after the corre-
sponding change of variables and up a constant factor, a Lagrangian 
of the form (5.19). So we conclude that the factorization approach 
provides precisely the ideal setting to compute Lagrangians via the JLM 
method. Nevertheless, this procedure may not be taken as general, and 
its application depends on the case of study.

6. Examples

In this section we will present some illustrative examples of interest, 
either due to their simplicity or their possible applications.

6.1. Example 1

Let us consider first Eq. (3.8) in the simplest case of constant 
coefficients. Let us also assume the following values for the coefficients: 
𝐴(𝑡) = 𝐴 ≡ const., 𝐵(𝑡) = 0, and 𝐶(𝑡) = 𝐶 ≡ const., which according to 
Eq. (3.7) implies 𝑓 (𝑡) = 2

√

𝐶tan(
√

𝐶𝑡). Then, Eq. (3.8) becomes the 
nonlinear ODE 

�̈� + 𝐴𝑥2�̇� + 𝐶𝑥 + 𝐴2

16
𝑥5 = 0, (6.1)

which admits the factorization 
[

𝑡 +
𝐴
4
𝑥2 −

√

𝐶tan(
√

𝐶𝑡)
] [

𝑡 +
𝐴
4
𝑥2 +

√

𝐶tan(
√

𝐶𝑡)
]

𝑥 = 0, (6.2)

whose general solution is given as follows
𝑥±(𝑡) =

±

√

2
[

𝑘1
√

𝐶cos(
√

𝐶𝑡) + sin(
√

𝐶𝑡)
]

√

𝑘2𝐶 + 𝐴
4
√

𝐶

(

2
√

𝐶
[

(𝐶𝑘21 + 1)𝑡 − 𝑘1cos(2
√

𝐶𝑡)
]

+ (𝐶𝑘21 − 1)sin(2
√

𝐶𝑡)
)

,

(6.3)
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where 𝑘1 and 𝑘2 are integration constants. It is straightforward to see 
that a bounded general solution can be found in the form 

𝑥±(𝑡) = ±

√

2
√

1
2𝐴𝑘1 +

𝑘2
𝑘21

𝑒
− 2𝑡

𝑘1

, (6.4)

for 𝐶 = − 1
𝑘21
, 𝑘1 ≠ 0, which represent a kink-type solution.

One particular solution can also be obtained for Eq. (6.1), and it is 
provided by Eq. (3.15) as follows 

𝑥±(𝑡) = ±

√

2cos(
√

𝐶𝑡)
√

𝑘3 + 𝐴
[

𝑡
2 + 1

4
√

𝐶
sin(2

√

𝐶𝑡)
]

, (6.5)

which is an unbounded solution.
In Fig.  1, plots of the general solutions and the particular solution, 

for a given set of parameter values, are shown. We can see that the 
general solution (6.3) (upper picture) blows up at a certain time 𝑡 =
𝑡0, whose location can be modified arbitrarily without changing the 
properties of the dynamics just by carefully selecting the values of 𝑘1
and 𝑘2 (the effect of varying 𝑘2 is a left shift). The system then presents 
bounded non periodic oscillations with decreasing amplitude, which 
slowly approaches to zero. The bounded general solution (6.4) displays 
a kink-type pattern which makes a smooth and localized transition 
between one steady state of null amplitude at 𝑡 → −∞ to another steady 
state of amplitude 2

√

𝐴𝑘1
 at 𝑡 → ∞. The particular solution (6.5) exhibits 

a similar dynamics to the one described for the general solution (6.3). 
The sole effect of the parameter 𝑘3 is a left shift in the solution. Indeed, 
the particular solution (6.5) can be understood as the limit curve of 
(6.3) when 𝑘1 → ∞, and then 𝑘2 plays essentially the same role as 𝑘3.

It is worth remarking that the values chosen for the different pa-
rameters involved must guarantee that the final solution to (3.1), either 
general or particular, is real and continuous in the domain of interest. 
This consideration also applies in the forthcoming examples.

According to (5.19), the Lagrangian for this case explicitly reads 

(𝑡, 𝑥, �̇�) = 1
4
sec4(

√

𝐶𝑡)
[

�̇� + 𝐴
4
𝑥3 +

√

𝐶𝑥 tan(
√

𝐶𝑡)
]−2

. (6.6)

6.2. Example 2

Let us consider now the following time-dependent coefficients with 
a linear polynomial form 𝐴(𝑡) = 𝑎1𝑡 + 𝑎2, 𝐵(𝑡) = 𝑏1𝑡, 𝑏1 ≠ 0, and the 
simplest case where 𝑓 (𝑡) = 0. Then, the nonlinear ODE (3.8) is

�̈� +
[

(𝑎1𝑡 + 𝑎2)𝑥2 + 𝑏1𝑡
]

�̇� +
𝑏1
2

(

1 +
𝑏1𝑡2

2

)

𝑥 + 1
4
[

(𝑎1𝑡 + 𝑎2)𝑏1𝑡 + 𝑎1
]

𝑥3

+ 1
16

(𝑎1𝑡 + 𝑎2)2𝑥5 = 0, (6.7)

which admits the (commutative) factorization 
[

𝑡 +
(𝑎1𝑡 + 𝑎2)

4
𝑥2 +

𝑏1𝑡
2

]2
𝑥 = 0. (6.8)

The general solution of Eq. (6.7) is given as follows
𝑥±(𝑡) =

±
2𝑏1

(

𝑡 + 𝑘1
)

√

2𝑘2𝑏21𝑒
𝑏1 𝑡2
2 + 𝑐𝑒

𝑏1 𝑡2
2 erf

(√

𝑏1 𝑡
√

2

)

− 2𝑎2𝑏1(𝑡 + 2𝑘1) − 2𝑎1
[

2 + 𝑏1(𝑡 + 𝑘1)2
]

,

(6.9)

where 𝑐 =
√

2𝜋𝑏1
(

𝑎2 + 2𝑎1𝑘1 + 𝑎2𝑏1𝑘21
)

, 𝑘1 and 𝑘2 are integration 
constants. In addition, according to Eq. (3.15), one particular solution 
is obtained as follows 

𝑥±(𝑡) = ±
2
√

𝑏1𝑒
− 𝑏1 𝑡

2

4

√

2𝑏1𝑘3 + 𝑎2
√

2𝜋𝑏1 erf
(

√

𝑏1𝑡
√

)

− 2𝑎1𝑒
− 𝑏1 𝑡2

2

, (6.10)
2
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Fig. 1. General solution 𝑥+(𝑡) from (6.3) for 𝐴 = 1, 𝐶 = 1, 𝑘2 = 1, and different values 
of 𝑘1 (upper figure). A similar behaviour is obtained by changing the value of 𝑘2 and 
fixing the remaining parameter values. General solution 𝑥+(𝑡) from (6.4) for 𝐴 = 1, 
𝑘2 = 1, and different values of 𝑘1 as shown in the graphics (middle figure). Particular 
solution 𝑥+(𝑡) in (6.5) for 𝐴 = 1, 𝐶 = 1 and different values of 𝑘3 (lower figure).

In Fig.  2, plots of the general solution (6.9) and particular solution 
(6.10) are displayed. For a precise balance in the parameters, it is 
possible to obtain solutions that are bounded and exhibit a localized 
behaviour in time, as illustrated in the pictures. In the general solution 
case (6.9) (upper and middle figures), the system oscillates once near 
the origin and then decays to zero at |𝑡| → ∞. The particular solution 
(6.10) however displays a slightly different behaviour (lower figure). 
Starting from the constant value 

√

− 2𝑏1
𝑎1
, the system performs one 

oscillation, whose amplitude and width increase as 𝑘3 becomes larger, 
reaching the same asymptotic value as 𝑡 → ∞.

The Lagrangian for Eq. (6.7) now reads 

(𝑡, 𝑥, �̇�) = 1 𝑒−
𝑏1
2 𝑡2

[

�̇� + 1 (

𝑎 𝑥2 + 2𝑏
)

𝑡𝑥 +
𝑎2 𝑥3

]−2
. (6.11)
4 4 1 1 4
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Fig. 2. General solution 𝑥+(𝑡) from (6.9) for 𝑎1 = 1, 𝑎2 = 0, 𝑏1 = 0.8, 𝑘2 = 20, and 
different values of 𝑘1 (upper figure). General solution 𝑥+(𝑡) from (6.9) for 𝑎1 = 1, 
𝑎2 = 0, 𝑏1 = 0.8, 𝑘1 = 1, and different values of 𝑘2 (middle figure). Particular solution 
(6.10) for 𝑎1 = 10, 𝑎2 = 1, 𝑏1 = −1 and different values of 𝑘3 (lower figure).

6.3. Example 3

Another example arises if we assume the following forms for 𝐴(𝑡), 
𝐵(𝑡) and 𝑓 (𝑡): 

𝐴(𝑡) = −𝐵(𝑡) = 𝜇(𝑡) = 1
2
[1 + tanh 𝑡] > 0, 𝑓 (𝑡) = 𝑓 ≡ const., 𝑓 ∈ 𝑅 − {0}.

(6.12)

The nonlinear second order ODE (3.8) now becomes
�̈� − 𝜇(𝑡)

[

1 − 𝑥2
]

�̇� + 1
4
(

𝜇2(𝑡) − 2�̇�(𝑡) − 𝑓 2) 𝑥

+ 1
4
(

�̇�(𝑡) − 𝜇2(𝑡)
)

𝑥3 +
𝜇2(𝑡)
16

𝑥5 = 0, (6.13)

which admits the following factorization 
[

𝑡 +
𝜇(𝑡)

𝑥2 −
𝜇(𝑡) + 𝑓

] [

𝑡 +
𝜇(𝑡)

𝑥2 −
𝜇(𝑡) − 𝑓

]

𝑥 = 0. (6.14)

4 2 4 2
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The general solution of Eq. (6.13) is given in analytic form by 

𝑥±(𝑡) = ±

√

2
(

1 + 𝑒2𝑡
)
1
4
(

𝑘1 +
1
𝑓 𝑒

𝑓𝑡
)

𝑒−
𝑓𝑡
2

√

√

2𝑘2 + ∫ 𝑡 𝑑𝑡1
(

𝑘1 +
1
𝑓 𝑒

𝑓𝑡1
)2

𝑒(2−𝑓 )𝑡1
(

1 + 𝑒2𝑡1
)− 1

2

, (6.15)

with 𝑘1 and 𝑘2 as integration constants. The particular solution is given 
as follows 

𝑥±(𝑡) = ±

√

2
(

1 + 𝑒2𝑡
)
1
4 𝑒−

𝑓𝑡
2

√

√

2𝑘3 + ∫ 𝑡 𝑑𝑡1𝑒(2−𝑓 )𝑡1
(

1 + 𝑒2𝑡1
)− 1

2

. (6.16)

Both solutions can be integrated, for the appropriate ranges of 
the parameters, as a combination of hypergeometric and elementary 
functions.

Fig.  3 displays some interesting dynamics for the general solution 
(6.15). Overall, a divergence is always present, whilst the system tends 
to the asymptotic value ±

√

2(1 + |𝑓 |) at 𝑡 → ∞. Nevertheless, diverse 
behaviours arise for different choices of the parameters involved. For 
𝑓 > 0, the general solution may show a semi-infinite well type shape 
(left upper figure) for 𝑘1 > 0, or a barrier type solution with an 
intermediate step (right upper figure) if 𝑘1 < 0. For 𝑓 < 0, a semi-
infinite barrier can emerge if 𝑘1 < 0 (lower left figure), while for a 
fixed 𝑘1 > 0, an intermediate flat plateau may appear at 𝑥 = 0 for large 
values of 𝑘2 (lower right figure).

In Fig.  4, the behaviour of particular solution (6.16) is analysed. 
This solution displays a kink-type profile for 𝑓 < 0, where the system 
transitions between two stationary states of asymptotic null amplitude 
at 𝑡 → −∞ and 

√

2(1 − 𝑓 ) at 𝑡 → ∞. Such behaviour is evinced in two 
cases: when changing 𝑘3 for a fixed 𝑓 (upper figure), and when 𝑓 varies 
for a given 𝑘3 (lower figure).

Finally, the Lagrangian for this case turns out to be 

(𝑡, 𝑥, �̇�) = 1

4
√

2
𝑒2𝑓𝑡

√

1 + 𝑒2𝑡
[

�̇� +
(

𝜇(𝑡)
4

𝑥2 +
𝑓 − 𝜇(𝑡)

2

)

𝑥
]−2

. (6.17)

7. Conclusion

In this work, we have obtained exact solutions of the extended 
Duffing–van der Pol oscillator with variable coefficients, given in the 
integrable form (3.8). The fact that Eq. (3.8) admits a noncommutative 
factorization imposes some restrictions for the time-dependent coef-
ficients: 𝐶(𝑡), 𝐷(𝑡), and 𝐸(𝑡) depend on 𝐴(𝑡), 𝐵(𝑡), and the arbitrary 
function 𝑓 (𝑡). Then, the factorization scheme, together with the FM, 
provides the general solution to the problem as well as a particular 
solution, which is obtained by solving the corresponding compatible 
first order ODE. The combination between these two techniques as a 
way to find solutions to nonlinear ODEs with variable coefficients is a 
novel approach.

The relations found for the coefficients exactly coincide with the 
ones obtained through Painlevé analysis. These restrictions precisely 
arise from the imposition that the general DVDP Eq. (3.1) is trans-
formed into PXXIV (4.3) after a scale-like transformation. PXXIV can 
be straightforwardly integrated, yielding the solution for (3.8). This 
solution is proved to fully coincide with the one derived through the 
factorization method.

Another indication of the powerful convergence of both approaches 
is the derivation of the Lagrangian. The factorization scheme provides 
the optimal setting to compute a multiplier and a Lagrangian for either 
PXXIV and the DVDP oscillator. Since both equations are connected 
through a scale transformation, the multipliers and Lagrangians for 
each case are related to each other. It is worth noticing that the 
combination of the factorization method with the Jacobi Last Multiplier 
as a way to find Lagrangians is a new approach, as well as the results 
derived from it.
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Fig. 3. General solution 𝑥+(𝑡) from (6.15) for different choices of the parameters: 𝑓 = 1, 𝑘2 = 1, and different values of 𝑘1 > 0 (upper left figure); 𝑓 = 1, 𝑘2 = 10, and different 
values of 𝑘1 < 0 (upper right figure); 𝑓 = −6, 𝑘2 = 10, varying 𝑘1 < 0 (lower left figure); 𝑓 = −10, 𝑘1 = 5, and increasing values of 𝑘2 > 0 (lower right figure).
Fig. 4. Particular solution (6.16) for 𝑓 = −1 when increasing 𝑘3 (upper figure), and 
for 𝑘3 = 1 while varying 𝑓 (lower figure).
9 
In order to show the rich dynamical behaviour of the force-free 
nonlinear DVDP oscillator, three illustrative examples are presented. 
Plots of the general and particular solutions for all three cases have 
been displayed and deeply analysed. We have also checked that the 
numerical integration of the DVDP Eq. in each case successfully agrees 
with the analytical solutions obtained throughout this research.
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